AnomalyDetectorClient.DetectUnivariateLastPointAsync Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Surcharges
DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken) |
Détectez les status d’anomalie du dernier point de la série chronologique. |
DetectUnivariateLastPointAsync(RequestContent, RequestContext) |
[Méthode de protocole] Détectez les status d’anomalie du dernier point de la série chronologique.
|
DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken)
- Source:
- AnomalyDetectorClient.cs
Détectez les status d’anomalie du dernier point de la série chronologique.
public virtual System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>> DetectUnivariateLastPointAsync (Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateLastPointAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>>
override this.DetectUnivariateLastPointAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>>
Public Overridable Function DetectUnivariateLastPointAsync (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Task(Of Response(Of UnivariateLastDetectionResult))
Paramètres
- options
- UnivariateDetectionOptions
Méthode de détection d’anomalie univariée.
- cancellationToken
- CancellationToken
Jeton d’annulation à utiliser.
Retours
Exceptions
options
a la valeur null.
Exemples
Cet exemple montre comment appeler DetectUnivariateLastPointAsync avec les paramètres requis.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var options = new UnivariateDetectionOptions(new TimeSeriesPoint[]
{
new TimeSeriesPoint(3.14f)
{
Timestamp = DateTimeOffset.UtcNow,
}
})
{
Granularity = TimeGranularity.Yearly,
CustomInterval = 1234,
Period = 1234,
MaxAnomalyRatio = 3.14f,
Sensitivity = 1234,
ImputeMode = ImputeMode.Auto,
ImputeFixedValue = 3.14f,
};
var result = await client.DetectUnivariateLastPointAsync(options);
Remarques
Cette opération génère un modèle en utilisant les points que vous avez envoyés à l’API et en fonction de toutes les données pour déterminer si le dernier point est anormal.
S’applique à
DetectUnivariateLastPointAsync(RequestContent, RequestContext)
- Source:
- AnomalyDetectorClient.cs
[Méthode de protocole] Détectez les status d’anomalie du dernier point de la série chronologique.
- Cette méthode de protocole permet la création explicite de la demande et le traitement de la réponse pour les scénarios avancés.
- Essayez d’abord la surcharge de commodité plus simple DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken) avec des modèles fortement typés.
public virtual System.Threading.Tasks.Task<Azure.Response> DetectUnivariateLastPointAsync (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateLastPointAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
override this.DetectUnivariateLastPointAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
Public Overridable Function DetectUnivariateLastPointAsync (content As RequestContent, Optional context As RequestContext = Nothing) As Task(Of Response)
Paramètres
- content
- RequestContent
Contenu à envoyer en tant que corps de la demande.
- context
- RequestContext
Contexte de la demande, qui peut remplacer les comportements par défaut du pipeline client par appel.
Retours
Réponse retournée par le service.
Exceptions
content
a la valeur null.
Le service a retourné un code de status non réussi.
Exemples
Cet exemple montre comment appeler DetectUnivariateLastPointAsync avec le contenu de requête requis et comment analyser le résultat.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
value = 123.45f,
}
},
};
Response response = await client.DetectUnivariateLastPointAsync(RequestContent.Create(data));
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());
Cet exemple montre comment appeler DetectUnivariateLastPointAsync avec tout le contenu de la demande et comment analyser le résultat.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
timestamp = "2022-05-10T14:57:31.2311892-04:00",
value = 123.45f,
}
},
granularity = "yearly",
customInterval = 1234,
period = 1234,
maxAnomalyRatio = 123.45f,
sensitivity = 1234,
imputeMode = "auto",
imputeFixedValue = 123.45f,
};
Response response = await client.DetectUnivariateLastPointAsync(RequestContent.Create(data), new RequestContext());
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());
Console.WriteLine(result.GetProperty("severity").ToString());
Remarques
Cette opération génère un modèle à l’aide des points que vous avez envoyés à l’API et en fonction de toutes les données pour déterminer si le dernier point est anormal.
Vous trouverez ci-dessous le schéma JSON pour les charges utiles de requête et de réponse.
Corps de la demande :
Schéma pour UnivariateDetectionOptions
:
{
series: [
{
timestamp: string (date & time), # Optional.
value: number, # Required.
}
], # Required.
granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
customInterval: number, # Optional.
period: number, # Optional.
maxAnomalyRatio: number, # Optional.
sensitivity: number, # Optional.
imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
imputeFixedValue: number, # Optional.
}
Corps de réponse :
Schéma pour UnivariateLastDetectionResult
:
{
period: number, # Required.
suggestedWindow: number, # Required.
expectedValue: number, # Required.
upperMargin: number, # Required.
lowerMargin: number, # Required.
isAnomaly: boolean, # Required.
isNegativeAnomaly: boolean, # Required.
isPositiveAnomaly: boolean, # Required.
severity: number, # Optional.
}
S’applique à
Azure SDK for .NET