Comment utiliser des modèles Mistral-7B et Mixtral chat
Important
Les éléments marqués (préversion) dans cet article sont actuellement en préversion publique. Cette préversion est fournie sans contrat de niveau de service, nous la déconseillons dans des charges de travail de production. Certaines fonctionnalités peuvent être limitées ou non prises en charge. Pour plus d’informations, consultez Conditions d’Utilisation Supplémentaires relatives aux Évaluations Microsoft Azure.
Dans cet article, vous découvrez les modèles de conversation Mistral-7B et Mixtral chat et la manière de les utiliser. Mistral AI propose deux catégories de modèles. Modèles Premium, y compris Mistral Large et Mistral Small, disponibles en tant qu'API serverless avec une facturation à l'utilisation basée sur des jetons. Modèles ouverts, notamment Mistral Nemo, Mixtral-8x7B-Instruct-v01, Mixtral-8x7B-v01, Mistral-7B-Instruct-v01 et Mistral-7B-v01, également disponibles en téléchargement et exécutables sur des points de terminaison gérés auto-hébergés.
Important
Les modèles qui sont en préversion comportent la mention préversion sur leur carte de modèle dans le catalogue de modèles.
Modèles de conversation Mistral-7B et Mixtral
Les modèles de conversation Mistral-7B et Mixtral incluent les modèles suivants :
Le grand modèle de langage (Large Language Model/LLM) Mistral-7B-Instruct est une version instruite et affinée du Mistral-7B, un modèle transformateur avec les choix d’architecture suivants :
- Attention par requête groupée
- Attention par fenêtre coulissante
- Générateur de jetons BPE de secours par octets
Les modèles suivants sont disponibles :
Conseil
En outre, MistralAI prend en charge l’utilisation d’une API personnalisée avec des fonctionnalités spécifiques du modèle. Pour utiliser l'API spécifique au fournisseur de modèle, consultez la Documentation MistralAI ou consultez la section des exemples d'inférence pour obtenir des exemples de code.
Prérequis
Pour utiliser les modèles de conversation Mistral-7B et Mixtral avec Azure AI Studio, vous avez besoin des prérequis suivants :
Un modèle de déploiement
Déploiement sur un calcul managé auto-hébergé
Les modèles de conversation Mistral-7B et Mixtral peuvent être déployés sur notre solution d’inférence managée auto-hébergée, ce qui vous permet de personnaliser et de contrôler tous les détails sur la façon dont le modèle est servi.
Pour un déploiement sur un calcul managé auto-hébergé, vous devez disposer d’un quota suffisant dans votre abonnement. Si vous n’avez pas suffisamment de quota disponible, vous pouvez utiliser notre accès temporaire au quota en sélectionnant l’option Je souhaite utiliser le quota partagé et je reconnais que ce point de terminaison sera supprimé dans 168 heures.
Package d’inférence installé
Vous pouvez utiliser des prédictions à partir de ce modèle à l’aide du package azure-ai-inference
avec Python. Pour installer ce package, vous avez besoin des prérequis suivants :
- Python 3.8 ou version ultérieure installée, y compris pip.
- L’URL du point de terminaison. Pour construire la bibliothèque cliente, vous devez passer l’URL du point de terminaison. L’URL du point de terminaison est sous la forme
https://your-host-name.your-azure-region.inference.ai.azure.com
, oùyour-host-name
est le nom d’hôte unique de votre modèle de déploiement etyour-azure-region
est la région Azure où le modèle est déployé (par exemple, eastus2). - En fonction de vos préférences de modèle de déploiement et d’authentification, vous aurez besoin d’une clé pour vous authentifier auprès du service ou des informations d’identification Microsoft Entra ID. La clé est une chaîne de 32 caractères.
Une fois ces conditions préalables remplies, installez le package d’inférence Azure AI avec la commande suivante :
pip install azure-ai-inference
En savoir plus sur le Package d’inférence et les informations de référence Azure AI.
Travailler avec des complétions de conversation
Dans cette section, vous utilisez l’API d’inférence de modèle Azure AI avec un modèle de complétion de conversation pour les conversations.
Conseil
L’API Inférence de modèle Azure AI vous permet de communiquer avec la plupart des modèles déployés dans Azure AI Studio avec le même code et la même structure, notamment les modèles de conversation Mistral-7B et Mixtral Chat.
Créer un client pour consommer le modèle
Tout d’abord, créez le client pour consommer le modèle. Le code suivant utilise une URL de point de terminaison et une clé qui sont stockées dans les variables d’environnement.
import os
from azure.ai.inference import ChatCompletionsClient
from azure.core.credentials import AzureKeyCredential
client = ChatCompletionsClient(
endpoint=os.environ["AZURE_INFERENCE_ENDPOINT"],
credential=AzureKeyCredential(os.environ["AZURE_INFERENCE_CREDENTIAL"]),
)
Lorsque vous déployez le modèle sur un point de terminaison en ligne auto-hébergé avec Microsoft Entra ID prise en charge, vous pouvez utiliser l’extrait de code suivant pour créer un client.
import os
from azure.ai.inference import ChatCompletionsClient
from azure.identity import DefaultAzureCredential
client = ChatCompletionsClient(
endpoint=os.environ["AZURE_INFERENCE_ENDPOINT"],
credential=DefaultAzureCredential(),
)
Obtenir les fonctionnalités du modèle
L’itinéraire /info
retourne des informations sur le modèle déployé sur le point de terminaison. Renvoyez les informations du modèle en appelant la méthode suivante :
model_info = client.get_model_info()
La réponse est comme suit :
print("Model name:", model_info.model_name)
print("Model type:", model_info.model_type)
print("Model provider name:", model_info.model_provider_name)
Model name: mistralai-Mistral-7B-Instruct-v01
Model type: chat-completions
Model provider name: MistralAI
Créer une requête de complétion de conversation
L’exemple suivant vous montre comment créer une requête de complétions de conversation de base sur le modèle.
from azure.ai.inference.models import SystemMessage, UserMessage
response = client.complete(
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="How many languages are in the world?"),
],
)
Remarque
mistralai-Mistral-7B-Instruct-v01, mistralai-Mistral-7B-Instruct-v02 et mistralai-Mixtral-8x22B-Instruct-v0-1 ne prennent pas en charge les messages système (role="system"
). Lorsque vous utilisez l’API Inférence de modèle Azure AI, les messages système sont traduits en messages utilisateur, ce qui est la fonctionnalité la plus proche disponible. Cette traduction est proposée pour des raisons pratiques, mais il est important de vérifier que le modèle suit les instructions du message système avec le niveau de confiance approprié.
La réponse est comme suit, où vous pouvez voir les statistiques d’utilisation du modèle :
print("Response:", response.choices[0].message.content)
print("Model:", response.model)
print("Usage:")
print("\tPrompt tokens:", response.usage.prompt_tokens)
print("\tTotal tokens:", response.usage.total_tokens)
print("\tCompletion tokens:", response.usage.completion_tokens)
Response: As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.
Model: mistralai-Mistral-7B-Instruct-v01
Usage:
Prompt tokens: 19
Total tokens: 91
Completion tokens: 72
Examinez la section usage
dans la réponse pour voir le nombre de jetons utilisés pour l’invite, le nombre total de jetons générés et le nombre de jetons utilisés pour la complétion.
Diffuser du contenu
Par défaut, l’API de complétion retourne l’intégralité du contenu généré dans une réponse unique. Si vous générez des complétions longues, l’attente de la réponse peut durer plusieurs secondes.
Vous pouvez diffuser en continu le contenu pour l’obtenir à mesure qu’il est généré. Diffuser le contenu en continu vous permet de commencer à traiter la complétion à mesure que le contenu devient disponible. Ce mode renvoie un objet qui diffuse la réponse en tant qu’événements envoyés par le serveur contenant uniquement des données. Extrayez les blocs du champ delta, plutôt que le champ de message.
result = client.complete(
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="How many languages are in the world?"),
],
temperature=0,
top_p=1,
max_tokens=2048,
stream=True,
)
Pour diffuser en continu des complétions, définissez stream=True
lorsque vous appelez le modèle.
Pour visualiser la sortie, définissez une fonction d’assistance pour imprimer le flux.
def print_stream(result):
"""
Prints the chat completion with streaming.
"""
import time
for update in result:
if update.choices:
print(update.choices[0].delta.content, end="")
Vous pouvez visualiser la façon dont la diffusion en continu génère du contenu :
print_stream(result)
Découvrir d’autres paramètres pris en charge par le client d’inférence
Explorez d’autres paramètres que vous pouvez spécifier dans le client d’inférence. Pour obtenir la liste complète de tous les paramètres pris en charge et leur documentation correspondante, consultez Référence de l’API Inférence de modèle Azure AI.
from azure.ai.inference.models import ChatCompletionsResponseFormatText
response = client.complete(
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="How many languages are in the world?"),
],
presence_penalty=0.1,
frequency_penalty=0.8,
max_tokens=2048,
stop=["<|endoftext|>"],
temperature=0,
top_p=1,
response_format={ "type": ChatCompletionsResponseFormatText() },
)
Avertissement
Les modèles Mistral ne prennent pas en charge la mise en forme de sortie JSON (response_format = { "type": "json_object" }
). Vous pouvez toujours demander au modèle de générer des sorties JSON. Cependant, il n’est pas garanti que de telles sorties soient en JSON valide.
Si vous souhaitez transmettre un paramètre qui ne figure pas dans la liste des paramètres pris en charge, vous pouvez le transmettre au modèle sous-jacent en utilisant des paramètres supplémentaires. Consulter Transmettre des paramètres supplémentaires au modèle.
Transmettre des paramètres supplémentaires au modèle
L'API d'inférence du modèle Azure AI vous permet de transmettre des paramètres supplémentaires au modèle. L’exemple de code suivant montre comment transmettre le paramètre supplémentaire logprobs
au modèle.
Avant de transmettre des paramètres supplémentaires à l’API Inférence de modèle Azure AI, assurez-vous que votre modèle prend en charge ces paramètres supplémentaires. Lorsque la requête est adressée au modèle sous-jacent, l’en-tête extra-parameters
est transmis au modèle avec la valeur pass-through
. Cette valeur indique au point de terminaison de transmettre les paramètres supplémentaires au modèle. L’utilisation de paramètres supplémentaires avec le modèle ne garantit pas que le modèle peut réellement les gérer. Lisez la documentation du modèle pour comprendre quels paramètres supplémentaires sont pris en charge.
response = client.complete(
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="How many languages are in the world?"),
],
model_extras={
"logprobs": True
}
)
Les paramètres supplémentaires suivants peuvent être transmis aux modèles de conversation Mistral-7B et Mixtral :
Nom | Description | Type |
---|---|---|
logit_bias |
Accepte un objet JSON qui mappe des jetons (spécifiés par leur ID de jeton dans le générateur de jetons) à une valeur de biais associée de -100 à 100. Mathématiquement, le biais est ajouté aux logits générés par le modèle avant l’échantillonnage. L’effet exact varie selon le modèle, mais les valeurs comprises entre -1 et 1 doivent diminuer ou augmenter la probabilité de sélection; les valeurs telles que -100 ou 100 doivent entraîner une interdiction ou une sélection exclusive du jeton approprié. | float |
logprobs |
Indique s’il faut retourner les probabilités de journal des jetons de sortie ou non. Si true, renvoie les probabilités de journal de chaque jeton de sortie renvoyé dans le content de message . |
int |
top_logprobs |
Entier compris entre 0 et 20 spécifiant le nombre des jetons les plus probables à retourner à chaque position de jeton, chacun avec une probabilité de journal associée. logprobs devez être défini sur true si ce paramètre est utilisé. |
float |
n |
Nombre d’options de complétion de conversation à générer pour chaque message d’entrée. Notez que vous serez facturé en fonction du nombre de jetons générés dans tous les choix. | int |
Modèles de conversation Mistral-7B et Mixtral
Les modèles de conversation Mistral-7B et Mixtral incluent les modèles suivants :
Le grand modèle de langage (Large Language Model/LLM) Mistral-7B-Instruct est une version instruite et affinée du Mistral-7B, un modèle transformateur avec les choix d’architecture suivants :
- Attention par requête groupée
- Attention par fenêtre coulissante
- Générateur de jetons BPE de secours par octets
Les modèles suivants sont disponibles :
Conseil
En outre, MistralAI prend en charge l’utilisation d’une API personnalisée avec des fonctionnalités spécifiques du modèle. Pour utiliser l'API spécifique au fournisseur de modèle, consultez la Documentation MistralAI ou consultez la section des exemples d'inférence pour obtenir des exemples de code.
Prérequis
Pour utiliser les modèles de conversation Mistral-7B et Mixtral avec Azure AI Studio, vous avez besoin des prérequis suivants :
Un modèle de déploiement
Déploiement sur un calcul managé auto-hébergé
Les modèles de conversation Mistral-7B et Mixtral peuvent être déployés sur notre solution d’inférence managée auto-hébergée, ce qui vous permet de personnaliser et de contrôler tous les détails sur la façon dont le modèle est servi.
Pour un déploiement sur un calcul managé auto-hébergé, vous devez disposer d’un quota suffisant dans votre abonnement. Si vous n’avez pas suffisamment de quota disponible, vous pouvez utiliser notre accès temporaire au quota en sélectionnant l’option Je souhaite utiliser le quota partagé et je reconnais que ce point de terminaison sera supprimé dans 168 heures.
Package d’inférence installé
Vous pouvez consommer des prédictions depuis ce modèle en utilisant le package @azure-rest/ai-inference
de npm
. Pour installer ce package, vous avez besoin des prérequis suivants :
- Versions LTS de
Node.js
avecnpm
. - L’URL du point de terminaison. Pour construire la bibliothèque cliente, vous devez passer l’URL du point de terminaison. L’URL du point de terminaison est sous la forme
https://your-host-name.your-azure-region.inference.ai.azure.com
, oùyour-host-name
est le nom d’hôte unique de votre modèle de déploiement etyour-azure-region
est la région Azure où le modèle est déployé (par exemple, eastus2). - En fonction de vos préférences de modèle de déploiement et d’authentification, vous aurez besoin d’une clé pour vous authentifier auprès du service ou des informations d’identification Microsoft Entra ID. La clé est une chaîne de 32 caractères.
Une fois ces prérequis remplis, installez la bibliothèque Azure Inference pour JavaScript avec la commande suivante :
npm install @azure-rest/ai-inference
Travailler avec des complétions de conversation
Dans cette section, vous utilisez l’API d’inférence de modèle Azure AI avec un modèle de complétion de conversation pour les conversations.
Conseil
L’API Inférence de modèle Azure AI vous permet de communiquer avec la plupart des modèles déployés dans Azure AI Studio avec le même code et la même structure, notamment les modèles de conversation Mistral-7B et Mixtral Chat.
Créer un client pour consommer le modèle
Tout d’abord, créez le client pour consommer le modèle. Le code suivant utilise une URL de point de terminaison et une clé qui sont stockées dans les variables d’environnement.
import ModelClient from "@azure-rest/ai-inference";
import { isUnexpected } from "@azure-rest/ai-inference";
import { AzureKeyCredential } from "@azure/core-auth";
const client = new ModelClient(
process.env.AZURE_INFERENCE_ENDPOINT,
new AzureKeyCredential(process.env.AZURE_INFERENCE_CREDENTIAL)
);
Lorsque vous déployez le modèle sur un point de terminaison en ligne auto-hébergé avec Microsoft Entra ID prise en charge, vous pouvez utiliser l’extrait de code suivant pour créer un client.
import ModelClient from "@azure-rest/ai-inference";
import { isUnexpected } from "@azure-rest/ai-inference";
import { DefaultAzureCredential } from "@azure/identity";
const client = new ModelClient(
process.env.AZURE_INFERENCE_ENDPOINT,
new DefaultAzureCredential()
);
Obtenir les fonctionnalités du modèle
L’itinéraire /info
retourne des informations sur le modèle déployé sur le point de terminaison. Renvoyez les informations du modèle en appelant la méthode suivante :
var model_info = await client.path("/info").get()
La réponse est comme suit :
console.log("Model name: ", model_info.body.model_name)
console.log("Model type: ", model_info.body.model_type)
console.log("Model provider name: ", model_info.body.model_provider_name)
Model name: mistralai-Mistral-7B-Instruct-v01
Model type: chat-completions
Model provider name: MistralAI
Créer une requête de complétion de conversation
L’exemple suivant vous montre comment créer une requête de complétions de conversation de base sur le modèle.
var messages = [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "How many languages are in the world?" },
];
var response = await client.path("/chat/completions").post({
body: {
messages: messages,
}
});
Remarque
mistralai-Mistral-7B-Instruct-v01, mistralai-Mistral-7B-Instruct-v02 et mistralai-Mixtral-8x22B-Instruct-v0-1 ne prennent pas en charge les messages système (role="system"
). Lorsque vous utilisez l’API Inférence de modèle Azure AI, les messages système sont traduits en messages utilisateur, ce qui est la fonctionnalité la plus proche disponible. Cette traduction est proposée pour des raisons pratiques, mais il est important de vérifier que le modèle suit les instructions du message système avec le niveau de confiance approprié.
La réponse est comme suit, où vous pouvez voir les statistiques d’utilisation du modèle :
if (isUnexpected(response)) {
throw response.body.error;
}
console.log("Response: ", response.body.choices[0].message.content);
console.log("Model: ", response.body.model);
console.log("Usage:");
console.log("\tPrompt tokens:", response.body.usage.prompt_tokens);
console.log("\tTotal tokens:", response.body.usage.total_tokens);
console.log("\tCompletion tokens:", response.body.usage.completion_tokens);
Response: As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.
Model: mistralai-Mistral-7B-Instruct-v01
Usage:
Prompt tokens: 19
Total tokens: 91
Completion tokens: 72
Examinez la section usage
dans la réponse pour voir le nombre de jetons utilisés pour l’invite, le nombre total de jetons générés et le nombre de jetons utilisés pour la complétion.
Diffuser du contenu
Par défaut, l’API de complétion retourne l’intégralité du contenu généré dans une réponse unique. Si vous générez des complétions longues, l’attente de la réponse peut durer plusieurs secondes.
Vous pouvez diffuser en continu le contenu pour l’obtenir à mesure qu’il est généré. Diffuser le contenu en continu vous permet de commencer à traiter la complétion à mesure que le contenu devient disponible. Ce mode renvoie un objet qui diffuse la réponse en tant qu’événements envoyés par le serveur contenant uniquement des données. Extrayez les blocs du champ delta, plutôt que le champ de message.
var messages = [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "How many languages are in the world?" },
];
var response = await client.path("/chat/completions").post({
body: {
messages: messages,
}
}).asNodeStream();
Pour diffuser les complétions en continu, utilisez .asNodeStream()
lorsque vous appelez le modèle.
Vous pouvez visualiser la façon dont la diffusion en continu génère du contenu :
var stream = response.body;
if (!stream) {
stream.destroy();
throw new Error(`Failed to get chat completions with status: ${response.status}`);
}
if (response.status !== "200") {
throw new Error(`Failed to get chat completions: ${response.body.error}`);
}
var sses = createSseStream(stream);
for await (const event of sses) {
if (event.data === "[DONE]") {
return;
}
for (const choice of (JSON.parse(event.data)).choices) {
console.log(choice.delta?.content ?? "");
}
}
Découvrir d’autres paramètres pris en charge par le client d’inférence
Explorez d’autres paramètres que vous pouvez spécifier dans le client d’inférence. Pour obtenir la liste complète de tous les paramètres pris en charge et leur documentation correspondante, consultez Référence de l’API Inférence de modèle Azure AI.
var messages = [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "How many languages are in the world?" },
];
var response = await client.path("/chat/completions").post({
body: {
messages: messages,
presence_penalty: "0.1",
frequency_penalty: "0.8",
max_tokens: 2048,
stop: ["<|endoftext|>"],
temperature: 0,
top_p: 1,
response_format: { type: "text" },
}
});
Avertissement
Les modèles Mistral ne prennent pas en charge la mise en forme de sortie JSON (response_format = { "type": "json_object" }
). Vous pouvez toujours demander au modèle de générer des sorties JSON. Cependant, il n’est pas garanti que de telles sorties soient en JSON valide.
Si vous souhaitez transmettre un paramètre qui ne figure pas dans la liste des paramètres pris en charge, vous pouvez le transmettre au modèle sous-jacent en utilisant des paramètres supplémentaires. Consulter Transmettre des paramètres supplémentaires au modèle.
Transmettre des paramètres supplémentaires au modèle
L'API d'inférence du modèle Azure AI vous permet de transmettre des paramètres supplémentaires au modèle. L’exemple de code suivant montre comment transmettre le paramètre supplémentaire logprobs
au modèle.
Avant de transmettre des paramètres supplémentaires à l’API Inférence de modèle Azure AI, assurez-vous que votre modèle prend en charge ces paramètres supplémentaires. Lorsque la requête est adressée au modèle sous-jacent, l’en-tête extra-parameters
est transmis au modèle avec la valeur pass-through
. Cette valeur indique au point de terminaison de transmettre les paramètres supplémentaires au modèle. L’utilisation de paramètres supplémentaires avec le modèle ne garantit pas que le modèle peut réellement les gérer. Lisez la documentation du modèle pour comprendre quels paramètres supplémentaires sont pris en charge.
var messages = [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "How many languages are in the world?" },
];
var response = await client.path("/chat/completions").post({
headers: {
"extra-params": "pass-through"
},
body: {
messages: messages,
logprobs: true
}
});
Les paramètres supplémentaires suivants peuvent être transmis aux modèles de conversation Mistral-7B et Mixtral :
Nom | Description | Type |
---|---|---|
logit_bias |
Accepte un objet JSON qui mappe des jetons (spécifiés par leur ID de jeton dans le générateur de jetons) à une valeur de biais associée de -100 à 100. Mathématiquement, le biais est ajouté aux logits générés par le modèle avant l’échantillonnage. L’effet exact varie selon le modèle, mais les valeurs comprises entre -1 et 1 doivent diminuer ou augmenter la probabilité de sélection; les valeurs telles que -100 ou 100 doivent entraîner une interdiction ou une sélection exclusive du jeton approprié. | float |
logprobs |
Indique s’il faut retourner les probabilités de journal des jetons de sortie ou non. Si true, renvoie les probabilités de journal de chaque jeton de sortie renvoyé dans le content de message . |
int |
top_logprobs |
Entier compris entre 0 et 20 spécifiant le nombre des jetons les plus probables à retourner à chaque position de jeton, chacun avec une probabilité de journal associée. logprobs devez être défini sur true si ce paramètre est utilisé. |
float |
n |
Nombre d’options de complétion de conversation à générer pour chaque message d’entrée. Notez que vous serez facturé en fonction du nombre de jetons générés dans tous les choix. | int |
Modèles de conversation Mistral-7B et Mixtral
Les modèles de conversation Mistral-7B et Mixtral incluent les modèles suivants :
Le grand modèle de langage (Large Language Model/LLM) Mistral-7B-Instruct est une version instruite et affinée du Mistral-7B, un modèle transformateur avec les choix d’architecture suivants :
- Attention par requête groupée
- Attention par fenêtre coulissante
- Générateur de jetons BPE de secours par octets
Les modèles suivants sont disponibles :
Conseil
En outre, MistralAI prend en charge l’utilisation d’une API personnalisée avec des fonctionnalités spécifiques du modèle. Pour utiliser l'API spécifique au fournisseur de modèle, consultez la Documentation MistralAI ou consultez la section des exemples d'inférence pour obtenir des exemples de code.
Prérequis
Pour utiliser les modèles de conversation Mistral-7B et Mixtral avec Azure AI Studio, vous avez besoin des prérequis suivants :
Un modèle de déploiement
Déploiement sur un calcul managé auto-hébergé
Les modèles de conversation Mistral-7B et Mixtral peuvent être déployés sur notre solution d’inférence managée auto-hébergée, ce qui vous permet de personnaliser et de contrôler tous les détails sur la façon dont le modèle est servi.
Pour un déploiement sur un calcul managé auto-hébergé, vous devez disposer d’un quota suffisant dans votre abonnement. Si vous n’avez pas suffisamment de quota disponible, vous pouvez utiliser notre accès temporaire au quota en sélectionnant l’option Je souhaite utiliser le quota partagé et je reconnais que ce point de terminaison sera supprimé dans 168 heures.
Package d’inférence installé
Vous pouvez consommer les prédictions de ce modèle en utilisant le package Azure.AI.Inference
de NuGet. Pour installer ce package, vous avez besoin des prérequis suivants :
- L’URL du point de terminaison. Pour construire la bibliothèque cliente, vous devez passer l’URL du point de terminaison. L’URL du point de terminaison est sous la forme
https://your-host-name.your-azure-region.inference.ai.azure.com
, oùyour-host-name
est le nom d’hôte unique de votre modèle de déploiement etyour-azure-region
est la région Azure où le modèle est déployé (par exemple, eastus2). - En fonction de vos préférences de modèle de déploiement et d’authentification, vous aurez besoin d’une clé pour vous authentifier auprès du service ou des informations d’identification Microsoft Entra ID. La clé est une chaîne de 32 caractères.
Une fois ces prérequis remplis, installez la bibliothèque d’inférence Azure AI avec la commande suivante :
dotnet add package Azure.AI.Inference --prerelease
Vous pouvez également vous authentifier avec Microsoft Entra ID (anciennement Azure Active Directory). Pour utiliser les fournisseurs d’informations d’identification fournis avec le kit de développement logiciel (SDK) Azure, installez le package Azure.Identity
:
dotnet add package Azure.Identity
Importez les espaces de noms suivants :
using Azure;
using Azure.Identity;
using Azure.AI.Inference;
Cet exemple utilise également les espaces de noms suivants, mais vous n’en aurez peut-être pas toujours besoin :
using System.Text.Json;
using System.Text.Json.Serialization;
using System.Reflection;
Travailler avec des complétions de conversation
Dans cette section, vous utilisez l’API d’inférence de modèle Azure AI avec un modèle de complétion de conversation pour les conversations.
Conseil
L’API Inférence de modèle Azure AI vous permet de communiquer avec la plupart des modèles déployés dans Azure AI Studio avec le même code et la même structure, notamment les modèles de conversation Mistral-7B et Mixtral Chat.
Créer un client pour consommer le modèle
Tout d’abord, créez le client pour consommer le modèle. Le code suivant utilise une URL de point de terminaison et une clé qui sont stockées dans les variables d’environnement.
ChatCompletionsClient client = new ChatCompletionsClient(
new Uri(Environment.GetEnvironmentVariable("AZURE_INFERENCE_ENDPOINT")),
new AzureKeyCredential(Environment.GetEnvironmentVariable("AZURE_INFERENCE_CREDENTIAL"))
);
Lorsque vous déployez le modèle sur un point de terminaison en ligne auto-hébergé avec Microsoft Entra ID prise en charge, vous pouvez utiliser l’extrait de code suivant pour créer un client.
client = new ChatCompletionsClient(
new Uri(Environment.GetEnvironmentVariable("AZURE_INFERENCE_ENDPOINT")),
new DefaultAzureCredential(includeInteractiveCredentials: true)
);
Obtenir les fonctionnalités du modèle
L’itinéraire /info
retourne des informations sur le modèle déployé sur le point de terminaison. Renvoyez les informations du modèle en appelant la méthode suivante :
Response<ModelInfo> modelInfo = client.GetModelInfo();
La réponse est comme suit :
Console.WriteLine($"Model name: {modelInfo.Value.ModelName}");
Console.WriteLine($"Model type: {modelInfo.Value.ModelType}");
Console.WriteLine($"Model provider name: {modelInfo.Value.ModelProviderName}");
Model name: mistralai-Mistral-7B-Instruct-v01
Model type: chat-completions
Model provider name: MistralAI
Créer une requête de complétion de conversation
L’exemple suivant vous montre comment créer une requête de complétions de conversation de base sur le modèle.
ChatCompletionsOptions requestOptions = new ChatCompletionsOptions()
{
Messages = {
new ChatRequestSystemMessage("You are a helpful assistant."),
new ChatRequestUserMessage("How many languages are in the world?")
},
};
Response<ChatCompletions> response = client.Complete(requestOptions);
Remarque
mistralai-Mistral-7B-Instruct-v01, mistralai-Mistral-7B-Instruct-v02 et mistralai-Mixtral-8x22B-Instruct-v0-1 ne prennent pas en charge les messages système (role="system"
). Lorsque vous utilisez l’API Inférence de modèle Azure AI, les messages système sont traduits en messages utilisateur, ce qui est la fonctionnalité la plus proche disponible. Cette traduction est proposée pour des raisons pratiques, mais il est important de vérifier que le modèle suit les instructions du message système avec le niveau de confiance approprié.
La réponse est comme suit, où vous pouvez voir les statistiques d’utilisation du modèle :
Console.WriteLine($"Response: {response.Value.Choices[0].Message.Content}");
Console.WriteLine($"Model: {response.Value.Model}");
Console.WriteLine("Usage:");
Console.WriteLine($"\tPrompt tokens: {response.Value.Usage.PromptTokens}");
Console.WriteLine($"\tTotal tokens: {response.Value.Usage.TotalTokens}");
Console.WriteLine($"\tCompletion tokens: {response.Value.Usage.CompletionTokens}");
Response: As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.
Model: mistralai-Mistral-7B-Instruct-v01
Usage:
Prompt tokens: 19
Total tokens: 91
Completion tokens: 72
Examinez la section usage
dans la réponse pour voir le nombre de jetons utilisés pour l’invite, le nombre total de jetons générés et le nombre de jetons utilisés pour la complétion.
Diffuser du contenu
Par défaut, l’API de complétion retourne l’intégralité du contenu généré dans une réponse unique. Si vous générez des complétions longues, l’attente de la réponse peut durer plusieurs secondes.
Vous pouvez diffuser en continu le contenu pour l’obtenir à mesure qu’il est généré. Diffuser le contenu en continu vous permet de commencer à traiter la complétion à mesure que le contenu devient disponible. Ce mode renvoie un objet qui diffuse la réponse en tant qu’événements envoyés par le serveur contenant uniquement des données. Extrayez les blocs du champ delta, plutôt que le champ de message.
static async Task StreamMessageAsync(ChatCompletionsClient client)
{
ChatCompletionsOptions requestOptions = new ChatCompletionsOptions()
{
Messages = {
new ChatRequestSystemMessage("You are a helpful assistant."),
new ChatRequestUserMessage("How many languages are in the world? Write an essay about it.")
},
MaxTokens=4096
};
StreamingResponse<StreamingChatCompletionsUpdate> streamResponse = await client.CompleteStreamingAsync(requestOptions);
await PrintStream(streamResponse);
}
Pour diffuser en continu des complétions, utilisez la méthode CompleteStreamingAsync
lorsque vous appelez le modèle. Notez que dans cet exemple, l’appel est encapsulé dans une méthode asynchrone.
Pour visualiser la sortie, définissez une méthode asynchrone pour imprimer le flux dans la console.
static async Task PrintStream(StreamingResponse<StreamingChatCompletionsUpdate> response)
{
await foreach (StreamingChatCompletionsUpdate chatUpdate in response)
{
if (chatUpdate.Role.HasValue)
{
Console.Write($"{chatUpdate.Role.Value.ToString().ToUpperInvariant()}: ");
}
if (!string.IsNullOrEmpty(chatUpdate.ContentUpdate))
{
Console.Write(chatUpdate.ContentUpdate);
}
}
}
Vous pouvez visualiser la façon dont la diffusion en continu génère du contenu :
StreamMessageAsync(client).GetAwaiter().GetResult();
Découvrir d’autres paramètres pris en charge par le client d’inférence
Explorez d’autres paramètres que vous pouvez spécifier dans le client d’inférence. Pour obtenir la liste complète de tous les paramètres pris en charge et leur documentation correspondante, consultez Référence de l’API Inférence de modèle Azure AI.
requestOptions = new ChatCompletionsOptions()
{
Messages = {
new ChatRequestSystemMessage("You are a helpful assistant."),
new ChatRequestUserMessage("How many languages are in the world?")
},
PresencePenalty = 0.1f,
FrequencyPenalty = 0.8f,
MaxTokens = 2048,
StopSequences = { "<|endoftext|>" },
Temperature = 0,
NucleusSamplingFactor = 1,
ResponseFormat = new ChatCompletionsResponseFormatText()
};
response = client.Complete(requestOptions);
Console.WriteLine($"Response: {response.Value.Choices[0].Message.Content}");
Avertissement
Les modèles Mistral ne prennent pas en charge la mise en forme de sortie JSON (response_format = { "type": "json_object" }
). Vous pouvez toujours demander au modèle de générer des sorties JSON. Cependant, il n’est pas garanti que de telles sorties soient en JSON valide.
Si vous souhaitez transmettre un paramètre qui ne figure pas dans la liste des paramètres pris en charge, vous pouvez le transmettre au modèle sous-jacent en utilisant des paramètres supplémentaires. Consulter Transmettre des paramètres supplémentaires au modèle.
Transmettre des paramètres supplémentaires au modèle
L'API d'inférence du modèle Azure AI vous permet de transmettre des paramètres supplémentaires au modèle. L’exemple de code suivant montre comment transmettre le paramètre supplémentaire logprobs
au modèle.
Avant de transmettre des paramètres supplémentaires à l’API Inférence de modèle Azure AI, assurez-vous que votre modèle prend en charge ces paramètres supplémentaires. Lorsque la requête est adressée au modèle sous-jacent, l’en-tête extra-parameters
est transmis au modèle avec la valeur pass-through
. Cette valeur indique au point de terminaison de transmettre les paramètres supplémentaires au modèle. L’utilisation de paramètres supplémentaires avec le modèle ne garantit pas que le modèle peut réellement les gérer. Lisez la documentation du modèle pour comprendre quels paramètres supplémentaires sont pris en charge.
requestOptions = new ChatCompletionsOptions()
{
Messages = {
new ChatRequestSystemMessage("You are a helpful assistant."),
new ChatRequestUserMessage("How many languages are in the world?")
},
AdditionalProperties = { { "logprobs", BinaryData.FromString("true") } },
};
response = client.Complete(requestOptions, extraParams: ExtraParameters.PassThrough);
Console.WriteLine($"Response: {response.Value.Choices[0].Message.Content}");
Les paramètres supplémentaires suivants peuvent être transmis aux modèles de conversation Mistral-7B et Mixtral :
Nom | Description | Type |
---|---|---|
logit_bias |
Accepte un objet JSON qui mappe des jetons (spécifiés par leur ID de jeton dans le générateur de jetons) à une valeur de biais associée de -100 à 100. Mathématiquement, le biais est ajouté aux logits générés par le modèle avant l’échantillonnage. L’effet exact varie selon le modèle, mais les valeurs comprises entre -1 et 1 doivent diminuer ou augmenter la probabilité de sélection; les valeurs telles que -100 ou 100 doivent entraîner une interdiction ou une sélection exclusive du jeton approprié. | float |
logprobs |
Indique s’il faut retourner les probabilités de journal des jetons de sortie ou non. Si true, renvoie les probabilités de journal de chaque jeton de sortie renvoyé dans le content de message . |
int |
top_logprobs |
Entier compris entre 0 et 20 spécifiant le nombre des jetons les plus probables à retourner à chaque position de jeton, chacun avec une probabilité de journal associée. logprobs devez être défini sur true si ce paramètre est utilisé. |
float |
n |
Nombre d’options de complétion de conversation à générer pour chaque message d’entrée. Notez que vous serez facturé en fonction du nombre de jetons générés dans tous les choix. | int |
Modèles de conversation Mistral-7B et Mixtral
Les modèles de conversation Mistral-7B et Mixtral incluent les modèles suivants :
Le grand modèle de langage (Large Language Model/LLM) Mistral-7B-Instruct est une version instruite et affinée du Mistral-7B, un modèle transformateur avec les choix d’architecture suivants :
- Attention par requête groupée
- Attention par fenêtre coulissante
- Générateur de jetons BPE de secours par octets
Les modèles suivants sont disponibles :
Conseil
En outre, MistralAI prend en charge l’utilisation d’une API personnalisée avec des fonctionnalités spécifiques du modèle. Pour utiliser l'API spécifique au fournisseur de modèle, consultez la Documentation MistralAI ou consultez la section des exemples d'inférence pour obtenir des exemples de code.
Prérequis
Pour utiliser les modèles de conversation Mistral-7B et Mixtral avec Azure AI Studio, vous avez besoin des prérequis suivants :
Un modèle de déploiement
Déploiement sur un calcul managé auto-hébergé
Les modèles de conversation Mistral-7B et Mixtral peuvent être déployés sur notre solution d’inférence managée auto-hébergée, ce qui vous permet de personnaliser et de contrôler tous les détails sur la façon dont le modèle est servi.
Pour un déploiement sur un calcul managé auto-hébergé, vous devez disposer d’un quota suffisant dans votre abonnement. Si vous n’avez pas suffisamment de quota disponible, vous pouvez utiliser notre accès temporaire au quota en sélectionnant l’option Je souhaite utiliser le quota partagé et je reconnais que ce point de terminaison sera supprimé dans 168 heures.
Un client REST
Les modèles déployés avec l’API Inférence de modèle Azure AI peuvent être consommés en utilisant tout client REST. Pour utiliser le client REST, vous avez besoin des prérequis suivants :
- Pour construire les requêtes, vous devez transmettre l’URL du point de terminaison. L’URL du point de terminaison a la forme
https://your-host-name.your-azure-region.inference.ai.azure.com
, oùyour-host-name`` is your unique model deployment host name and
votre-région-azure`` est la région Azure où le modèle est déployé (par exemple, eastus2). - En fonction de vos préférences de modèle de déploiement et d’authentification, vous aurez besoin d’une clé pour vous authentifier auprès du service ou des informations d’identification Microsoft Entra ID. La clé est une chaîne de 32 caractères.
Travailler avec des complétions de conversation
Dans cette section, vous utilisez l’API d’inférence de modèle Azure AI avec un modèle de complétion de conversation pour les conversations.
Conseil
L’API Inférence de modèle Azure AI vous permet de communiquer avec la plupart des modèles déployés dans Azure AI Studio avec le même code et la même structure, notamment les modèles de conversation Mistral-7B et Mixtral Chat.
Créer un client pour consommer le modèle
Tout d’abord, créez le client pour consommer le modèle. Le code suivant utilise une URL de point de terminaison et une clé qui sont stockées dans les variables d’environnement.
Lorsque vous déployez le modèle sur un point de terminaison en ligne auto-hébergé avec Microsoft Entra ID prise en charge, vous pouvez utiliser l’extrait de code suivant pour créer un client.
Obtenir les fonctionnalités du modèle
L’itinéraire /info
retourne des informations sur le modèle déployé sur le point de terminaison. Renvoyez les informations du modèle en appelant la méthode suivante :
GET /info HTTP/1.1
Host: <ENDPOINT_URI>
Authorization: Bearer <TOKEN>
Content-Type: application/json
La réponse est comme suit :
{
"model_name": "mistralai-Mistral-7B-Instruct-v01",
"model_type": "chat-completions",
"model_provider_name": "MistralAI"
}
Créer une requête de complétion de conversation
L’exemple suivant vous montre comment créer une requête de complétions de conversation de base sur le modèle.
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "How many languages are in the world?"
}
]
}
Remarque
mistralai-Mistral-7B-Instruct-v01, mistralai-Mistral-7B-Instruct-v02 et mistralai-Mixtral-8x22B-Instruct-v0-1 ne prennent pas en charge les messages système (role="system"
). Lorsque vous utilisez l’API Inférence de modèle Azure AI, les messages système sont traduits en messages utilisateur, ce qui est la fonctionnalité la plus proche disponible. Cette traduction est proposée pour des raisons pratiques, mais il est important de vérifier que le modèle suit les instructions du message système avec le niveau de confiance approprié.
La réponse est comme suit, où vous pouvez voir les statistiques d’utilisation du modèle :
{
"id": "0a1234b5de6789f01gh2i345j6789klm",
"object": "chat.completion",
"created": 1718726686,
"model": "mistralai-Mistral-7B-Instruct-v01",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.",
"tool_calls": null
},
"finish_reason": "stop",
"logprobs": null
}
],
"usage": {
"prompt_tokens": 19,
"total_tokens": 91,
"completion_tokens": 72
}
}
Examinez la section usage
dans la réponse pour voir le nombre de jetons utilisés pour l’invite, le nombre total de jetons générés et le nombre de jetons utilisés pour la complétion.
Diffuser du contenu
Par défaut, l’API de complétion retourne l’intégralité du contenu généré dans une réponse unique. Si vous générez des complétions longues, l’attente de la réponse peut durer plusieurs secondes.
Vous pouvez diffuser en continu le contenu pour l’obtenir à mesure qu’il est généré. Diffuser le contenu en continu vous permet de commencer à traiter la complétion à mesure que le contenu devient disponible. Ce mode renvoie un objet qui diffuse la réponse en tant qu’événements envoyés par le serveur contenant uniquement des données. Extrayez les blocs du champ delta, plutôt que le champ de message.
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "How many languages are in the world?"
}
],
"stream": true,
"temperature": 0,
"top_p": 1,
"max_tokens": 2048
}
Vous pouvez visualiser la façon dont la diffusion en continu génère du contenu :
{
"id": "23b54589eba14564ad8a2e6978775a39",
"object": "chat.completion.chunk",
"created": 1718726371,
"model": "mistralai-Mistral-7B-Instruct-v01",
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": ""
},
"finish_reason": null,
"logprobs": null
}
]
}
Le dernier message dans le flux a finish_reason
défini, indiquant la raison de l’arrêt du processus de génération.
{
"id": "23b54589eba14564ad8a2e6978775a39",
"object": "chat.completion.chunk",
"created": 1718726371,
"model": "mistralai-Mistral-7B-Instruct-v01",
"choices": [
{
"index": 0,
"delta": {
"content": ""
},
"finish_reason": "stop",
"logprobs": null
}
],
"usage": {
"prompt_tokens": 19,
"total_tokens": 91,
"completion_tokens": 72
}
}
Découvrir d’autres paramètres pris en charge par le client d’inférence
Explorez d’autres paramètres que vous pouvez spécifier dans le client d’inférence. Pour obtenir la liste complète de tous les paramètres pris en charge et leur documentation correspondante, consultez Référence de l’API Inférence de modèle Azure AI.
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "How many languages are in the world?"
}
],
"presence_penalty": 0.1,
"frequency_penalty": 0.8,
"max_tokens": 2048,
"stop": ["<|endoftext|>"],
"temperature" :0,
"top_p": 1,
"response_format": { "type": "text" }
}
{
"id": "0a1234b5de6789f01gh2i345j6789klm",
"object": "chat.completion",
"created": 1718726686,
"model": "mistralai-Mistral-7B-Instruct-v01",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.",
"tool_calls": null
},
"finish_reason": "stop",
"logprobs": null
}
],
"usage": {
"prompt_tokens": 19,
"total_tokens": 91,
"completion_tokens": 72
}
}
Avertissement
Les modèles Mistral ne prennent pas en charge la mise en forme de sortie JSON (response_format = { "type": "json_object" }
). Vous pouvez toujours demander au modèle de générer des sorties JSON. Cependant, il n’est pas garanti que de telles sorties soient en JSON valide.
Si vous souhaitez transmettre un paramètre qui ne figure pas dans la liste des paramètres pris en charge, vous pouvez le transmettre au modèle sous-jacent en utilisant des paramètres supplémentaires. Consulter Transmettre des paramètres supplémentaires au modèle.
Transmettre des paramètres supplémentaires au modèle
L'API d'inférence du modèle Azure AI vous permet de transmettre des paramètres supplémentaires au modèle. L’exemple de code suivant montre comment transmettre le paramètre supplémentaire logprobs
au modèle.
Avant de transmettre des paramètres supplémentaires à l’API Inférence de modèle Azure AI, assurez-vous que votre modèle prend en charge ces paramètres supplémentaires. Lorsque la requête est adressée au modèle sous-jacent, l’en-tête extra-parameters
est transmis au modèle avec la valeur pass-through
. Cette valeur indique au point de terminaison de transmettre les paramètres supplémentaires au modèle. L’utilisation de paramètres supplémentaires avec le modèle ne garantit pas que le modèle peut réellement les gérer. Lisez la documentation du modèle pour comprendre quels paramètres supplémentaires sont pris en charge.
POST /chat/completions HTTP/1.1
Host: <ENDPOINT_URI>
Authorization: Bearer <TOKEN>
Content-Type: application/json
extra-parameters: pass-through
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "How many languages are in the world?"
}
],
"logprobs": true
}
Les paramètres supplémentaires suivants peuvent être transmis aux modèles de conversation Mistral-7B et Mixtral :
Nom | Description | Type |
---|---|---|
logit_bias |
Accepte un objet JSON qui mappe des jetons (spécifiés par leur ID de jeton dans le générateur de jetons) à une valeur de biais associée de -100 à 100. Mathématiquement, le biais est ajouté aux logits générés par le modèle avant l’échantillonnage. L’effet exact varie selon le modèle, mais les valeurs comprises entre -1 et 1 doivent diminuer ou augmenter la probabilité de sélection; les valeurs telles que -100 ou 100 doivent entraîner une interdiction ou une sélection exclusive du jeton approprié. | float |
logprobs |
Indique s’il faut retourner les probabilités de journal des jetons de sortie ou non. Si true, renvoie les probabilités de journal de chaque jeton de sortie renvoyé dans le content de message . |
int |
top_logprobs |
Entier compris entre 0 et 20 spécifiant le nombre des jetons les plus probables à retourner à chaque position de jeton, chacun avec une probabilité de journal associée. logprobs devez être défini sur true si ce paramètre est utilisé. |
float |
n |
Nombre d’options de complétion de conversation à générer pour chaque message d’entrée. Notez que vous serez facturé en fonction du nombre de jetons générés dans tous les choix. | int |
Autres exemples d’inférence
Pour plus d’exemples sur la manière d’utiliser les modèles Mistral, consultez les exemples et didacticiels suivants :
Description | Langage | Exemple |
---|---|---|
Requête CURL | Bash | Lien |
Package Azure AI Inference pour JavaScript | JavaScript | Lien |
Package Azure AI Inference pour Python | Python | Lien |
Requêtes Web Python | Python | Lien |
Kit de développement logiciel (SDK) OpenAI (expérimental) | Python | Lien |
LangChain | Python | Lien |
Mistral AI | Python | Lien |
LiteLLM | Python | Lien |
Considérations relatives aux coûts et aux quotas pour les modèles Mistral déployés sur un calcul managé
Les modèles Mistral déployés sur un calcul managé sont facturés en fonction des heures cœur de l’instance de calcul associée. Le coût de l’instance de calcul est déterminé par la taille de l’instance, le nombre d’instances en cours d’exécution et la durée d’exécution.
Il est recommandé de commencer par un nombre d’instances peu élevé et d’effectuer un scale-up si nécessaire. Vous pouvez surveiller le coût de l’instance de calcul dans le Portail Azure.
Contenu connexe
- API Inférence de modèle Azure AI
- Déployer des modèles en tant que des API sans serveur
- Consommer des points de terminaison d'API serverless depuis un autre projet ou un autre hub Azure AI Studio
- Disponibilité des régions pour les modèles dans les points de terminaison d’API serverless
- Planifier et gérer les coûts (Place de marché)