Partage via


Faire un upsert des données dans Azure Cosmos DB for Apache Cassandra à partir de Spark

S’APPLIQUE À : Cassandra

Cet article explique comment effectuer un upsert de données dans Azure Cosmos DB for Apache Cassandra à partir de Spark.

API pour la configuration Cassandra

Définissez la configuration spark ci-dessous dans votre cluster de notebooks. Cette activité s’effectue une seule fois.

//Connection-related
 spark.cassandra.connection.host  YOUR_ACCOUNT_NAME.cassandra.cosmosdb.azure.com  
 spark.cassandra.connection.port  10350  
 spark.cassandra.connection.ssl.enabled  true  
 spark.cassandra.auth.username  YOUR_ACCOUNT_NAME  
 spark.cassandra.auth.password  YOUR_ACCOUNT_KEY  
// if using Spark 2.x
// spark.cassandra.connection.factory  com.microsoft.azure.cosmosdb.cassandra.CosmosDbConnectionFactory  

//Throughput-related...adjust as needed
 spark.cassandra.output.batch.size.rows  1  
// spark.cassandra.connection.connections_per_executor_max  10   // Spark 2.x
 spark.cassandra.connection.remoteConnectionsPerExecutor  10   // Spark 3.x
 spark.cassandra.output.concurrent.writes  1000  
 spark.cassandra.concurrent.reads  512  
 spark.cassandra.output.batch.grouping.buffer.size  1000  
 spark.cassandra.connection.keep_alive_ms  600000000  

Notes

Si vous utilisez Spark 3.x, il n’est pas nécessaire d’installer l’assistance Cosmos DB ni la fabrique de connexion. Par ailleurs, utilisez remoteConnectionsPerExecutor plutôt que connections_per_executor_max pour le connecteur Spark 3 (cf. ci-dessus).

Avertissement

Les exemples Spark 3 présentés dans cet article ont été testés avec la version 3.2.1 de Spark et le connecteur Spark Cassandra correspondant, com.datastax.spark:spark-cassandra-connector-assembly_2.12:3.2.0. Les versions ultérieures de Spark et/ou du connecteur Cassandra peuvent ne pas fonctionner comme prévu.

API Dataframe

Créer un dataframe

import org.apache.spark.sql.cassandra._
//Spark connector
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector

//if using Spark 2.x, CosmosDB library for multiple retry
//import com.microsoft.azure.cosmosdb.cassandra

// (1) Update: Changing author name to include prefix of "Sir"
// (2) Insert: adding a new book

val booksUpsertDF = Seq(
    ("b00001", "Sir Arthur Conan Doyle", "A study in scarlet", 1887),
    ("b00023", "Sir Arthur Conan Doyle", "A sign of four", 1890),
    ("b01001", "Sir Arthur Conan Doyle", "The adventures of Sherlock Holmes", 1892),
    ("b00501", "Sir Arthur Conan Doyle", "The memoirs of Sherlock Holmes", 1893),
    ("b00300", "Sir Arthur Conan Doyle", "The hounds of Baskerville", 1901),
    ("b09999", "Sir Arthur Conan Doyle", "The return of Sherlock Holmes", 1905)
    ).toDF("book_id", "book_author", "book_name", "book_pub_year")
booksUpsertDF.show()

Effectuer un upsert de données

// Upsert is no different from create
booksUpsertDF.write
  .mode("append")
  .format("org.apache.spark.sql.cassandra")
  .options(Map( "table" -> "books", "keyspace" -> "books_ks"))
  .save()

Mettre à jour des données

//Cassandra connector instance
val cdbConnector = CassandraConnector(sc)

//This runs on the driver, leverage only for one off updates
cdbConnector.withSessionDo(session => session.execute("update books_ks.books set book_price=99.33 where book_id ='b00300' and book_pub_year = 1901;"))

API pour le jeu de donnée distribué résilient

Notes

L’upsert à partir de l’API RDD est identique à l’opération de création

Étapes suivantes

Passez aux articles suivants pour effectuer d’autres opérations sur les données stockées dans des tables Azure Cosmos DB for Apache Cassandra :