Supprimez des données dans Azure Cosmos DB pour Apache Cassandra à partir de Spark
S’APPLIQUE À : Cassandra
Cet article explique comment supprimer des données dans Azure Cosmos DB pour les tables Apache Cassandra à partir de Spark.
API pour la configuration Cassandra
Définissez la configuration spark ci-dessous dans votre cluster de notebooks. Cette activité s’effectue une seule fois.
//Connection-related
spark.cassandra.connection.host YOUR_ACCOUNT_NAME.cassandra.cosmosdb.azure.com
spark.cassandra.connection.port 10350
spark.cassandra.connection.ssl.enabled true
spark.cassandra.auth.username YOUR_ACCOUNT_NAME
spark.cassandra.auth.password YOUR_ACCOUNT_KEY
// if using Spark 2.x
// spark.cassandra.connection.factory com.microsoft.azure.cosmosdb.cassandra.CosmosDbConnectionFactory
//Throughput-related...adjust as needed
spark.cassandra.output.batch.size.rows 1
// spark.cassandra.connection.connections_per_executor_max 10 // Spark 2.x
spark.cassandra.connection.remoteConnectionsPerExecutor 10 // Spark 3.x
spark.cassandra.output.concurrent.writes 1000
spark.cassandra.concurrent.reads 512
spark.cassandra.output.batch.grouping.buffer.size 1000
spark.cassandra.connection.keep_alive_ms 600000000
Notes
Si vous utilisez Spark 3.x, il n’est pas nécessaire d’installer l’assistance Cosmos DB ni la fabrique de connexion. Par ailleurs, utilisez remoteConnectionsPerExecutor
plutôt que connections_per_executor_max
pour le connecteur Spark 3 (cf. ci-dessus).
Avertissement
Les exemples Spark 3 présentés dans cet article ont été testés avec la version 3.2.1 de Spark et le connecteur Spark Cassandra correspondant, com.datastax.spark:spark-cassandra-connector-assembly_2.12:3.2.0. Les versions ultérieures de Spark et/ou du connecteur Cassandra peuvent ne pas fonctionner comme prévu.
Générateur d’exemple de données
Nous allons nous servir de ce fragment de code pour générer un exemple de données :
import org.apache.spark.sql.cassandra._
//Spark connector
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector
//if using Spark 2.x, CosmosDB library for multiple retry
//import com.microsoft.azure.cosmosdb.cassandra
//Create dataframe
val booksDF = Seq(
("b00001", "Arthur Conan Doyle", "A study in scarlet", 1887,11.33),
("b00023", "Arthur Conan Doyle", "A sign of four", 1890,22.45),
("b01001", "Arthur Conan Doyle", "The adventures of Sherlock Holmes", 1892,19.83),
("b00501", "Arthur Conan Doyle", "The memoirs of Sherlock Holmes", 1893,14.22),
("b00300", "Arthur Conan Doyle", "The hounds of Baskerville", 1901,12.25)
).toDF("book_id", "book_author", "book_name", "book_pub_year","book_price")
//Persist
booksDF.write
.mode("append")
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks", "output.consistency.level" -> "ALL", "ttl" -> "10000000"))
.save()
API Dataframe
Supprimer des lignes qui satisfont à une condition
//1) Create dataframe
val deleteBooksDF = spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
.filter("book_id = 'b01001'")
//2) Review execution plan
deleteBooksDF.explain
//3) Review table data before execution
println("==================")
println("1) Before")
deleteBooksDF.show
println("==================")
//4) Delete selected records in dataframe
println("==================")
println("2a) Starting delete")
//Reuse connection for each partition
val cdbConnector = CassandraConnector(sc)
deleteBooksDF.foreachPartition((partition: Iterator[Row]) => {
cdbConnector.withSessionDo(session =>
partition.foreach{ book =>
val delete = s"DELETE FROM books_ks.books where book_id='"+book.getString(0) +"';"
session.execute(delete)
})
})
println("2b) Completed delete")
println("==================")
//5) Review table data after delete operation
println("3) After")
spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
.show
Output:
== Physical Plan ==
*(1) Filter (isnotnull(book_pub_year#486) && (book_pub_year#486 = 1887))
+- *(1) Scan org.apache.spark.sql.cassandra.CassandraSourceRelation@197cfae4 [book_id#482,book_author#483,book_name#484,book_price#485,book_pub_year#486]
PushedFilters: [IsNotNull(book_pub_year), EqualTo(book_pub_year,1887)],
ReadSchema: struct<book_id:string,book_author:string,book_name:string,book_price:float,book_pub_year:int>
==================
1) Before
+-------+------------------+------------------+----------+-------------+
|book_id| book_author| book_name|book_price|book_pub_year|
+-------+------------------+------------------+----------+-------------+
| b00001|Arthur Conan Doyle|A study in scarlet| 11.33| 1887|
+-------+------------------+------------------+----------+-------------+
==================
==================
2a) Starting delete
2b) Completed delete
==================
3) After
+-------+------------------+--------------------+----------+-------------+
|book_id| book_author| book_name|book_price|book_pub_year|
+-------+------------------+--------------------+----------+-------------+
| b00300|Arthur Conan Doyle|The hounds of Bas...| 12.25| 1901|
| b03999|Arthur Conan Doyle|The adventure of ...| null| 1892|
| b00023|Arthur Conan Doyle| A sign of four| 22.45| 1890|
| b00501|Arthur Conan Doyle|The memoirs of Sh...| 14.22| 1893|
| b01001|Arthur Conan Doyle|The adventures of...| 19.83| 1892|
| b02999|Arthur Conan Doyle| A case of identity| 15.0| 1891|
+-------+------------------+--------------------+----------+-------------+
deleteBooksDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [book_id: string, book_author: string ... 3 more fields]
cdbConnector: com.datastax.spark.connector.cql.CassandraConnector = com.datastax.spark.connector.cql.CassandraConnector@187deb43
Supprimer toutes les lignes de la table
//1) Create dataframe
val deleteBooksDF = spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
//2) Review execution plan
deleteBooksDF.explain
//3) Review table data before execution
println("==================")
println("1) Before")
deleteBooksDF.show
println("==================")
//4) Delete selected records in dataframe
println("==================")
println("2a) Starting delete")
//Reuse connection for each partition
val cdbConnector = CassandraConnector(sc)
deleteBooksDF.foreachPartition((partition: Iterator[Row]) => {
cdbConnector.withSessionDo(session =>
partition.foreach{ book =>
val delete = s"DELETE FROM books_ks.books where book_id='"+book.getString(0) +"';"
session.execute(delete)
})
})
println("2b) Completed delete")
println("==================")
//5) Review table data after delete operation
println("3) After")
spark
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
.show
Output:
== Physical Plan ==
*(1) Scan org.apache.spark.sql.cassandra.CassandraSourceRelation@495377d7 [book_id#565,book_author#566,book_name#567,book_price#568,book_pub_year#569]
PushedFilters: [],
ReadSchema: struct<book_id:string,book_author:string,book_name:string,book_price:float,book_pub_year:int>
==================
1) Before
+-------+------------------+--------------------+----------+-------------+
|book_id| book_author| book_name|book_price|book_pub_year|
+-------+------------------+--------------------+----------+-------------+
| b00300|Arthur Conan Doyle|The hounds of Bas...| 12.25| 1901|
| b03999|Arthur Conan Doyle|The adventure of ...| null| 1892|
| b00023|Arthur Conan Doyle| A sign of four| 22.45| 1890|
| b00501|Arthur Conan Doyle|The memoirs of Sh...| 14.22| 1893|
| b01001|Arthur Conan Doyle|The adventures of...| 19.83| 1892|
| b02999|Arthur Conan Doyle| A case of identity| 15.0| 1891|
+-------+------------------+--------------------+----------+-------------+
==================
==================
2a) Starting delete
2b) Completed delete
==================
3) After
+-------+-----------+---------+----------+-------------+
|book_id|book_author|book_name|book_price|book_pub_year|
+-------+-----------+---------+----------+-------------+
+-------+-----------+---------+----------+-------------+
API pour le jeu de donnée distribué résilient
Supprimer toutes les lignes de la table
//1) Create RDD with all rows
val deleteBooksRDD =
sc.cassandraTable("books_ks", "books")
//2) Review table data before execution
println("==================")
println("1) Before")
deleteBooksRDD.collect.foreach(println)
println("==================")
//3) Delete selected records in dataframe
println("==================")
println("2a) Starting delete")
/* Option 1:
// Not supported currently
sc.cassandraTable("books_ks", "books")
.where("book_pub_year = 1891")
.deleteFromCassandra("books_ks", "books")
*/
//Option 2: CassandraConnector and CQL
//Reuse connection for each partition
val cdbConnector = CassandraConnector(sc)
deleteBooksRDD.foreachPartition(partition => {
cdbConnector.withSessionDo(session =>
partition.foreach{book =>
val delete = s"DELETE FROM books_ks.books where book_id='"+ book.getString(0) +"';"
session.execute(delete)
}
)
})
println("Completed delete")
println("==================")
println("2b) Completed delete")
println("==================")
//5) Review table data after delete operation
println("3) After")
sc.cassandraTable("books_ks", "books").collect.foreach(println)
Output:
==================
1) Before
CassandraRow{book_id: b00300, book_author: Arthur Conan Doyle, book_name: The hounds of Baskerville, book_price: 12.25, book_pub_year: 1901}
CassandraRow{book_id: b00001, book_author: Arthur Conan Doyle, book_name: A study in scarlet, book_price: 11.33, book_pub_year: 1887}
CassandraRow{book_id: b00023, book_author: Arthur Conan Doyle, book_name: A sign of four, book_price: 22.45, book_pub_year: 1890}
CassandraRow{book_id: b00501, book_author: Arthur Conan Doyle, book_name: The memoirs of Sherlock Holmes, book_price: 14.22, book_pub_year: 1893}
CassandraRow{book_id: b01001, book_author: Arthur Conan Doyle, book_name: The adventures of Sherlock Holmes, book_price: 19.83, book_pub_year: 1892}
==================
==================
2a) Starting delete
Completed delete
==================
2b) Completed delete
==================
3) After
deleteBooksRDD: com.datastax.spark.connector.rdd.CassandraTableScanRDD[com.datastax.spark.connector.CassandraRow] = CassandraTableScanRDD[126] at RDD at CassandraRDD.scala:19
cdbConnector: com.datastax.spark.connector.cql.CassandraConnector = com.datastax.spark.connector.cql.CassandraConnector@317927
Supprimer des colonnes spécifiques
//1) Create RDD
val deleteBooksRDD =
sc.cassandraTable("books_ks", "books")
//2) Review table data before execution
println("==================")
println("1) Before")
deleteBooksRDD.collect.foreach(println)
println("==================")
//3) Delete specific column values
println("==================")
println("2a) Starting delete of book price")
sc.cassandraTable("books_ks", "books")
.deleteFromCassandra("books_ks", "books",SomeColumns("book_price"))
println("Completed delete")
println("==================")
println("2b) Completed delete")
println("==================")
//5) Review table data after delete operation
println("3) After")
sc.cassandraTable("books_ks", "books").take(4).foreach(println)
Output:
==================
1) Before
CassandraRow{book_id: b00300, book_author: Arthur Conan Doyle, book_name: The hounds of Baskerville, book_price: 20.0, book_pub_year: 1901}
CassandraRow{book_id: b00001, book_author: Arthur Conan Doyle, book_name: A study in scarlet, book_price: 23.0, book_pub_year: 1887}
CassandraRow{book_id: b00023, book_author: Arthur Conan Doyle, book_name: A sign of four, book_price: 11.0, book_pub_year: 1890}
CassandraRow{book_id: b00501, book_author: Arthur Conan Doyle, book_name: The memoirs of Sherlock Holmes, book_price: 5.0, book_pub_year: 1893}
CassandraRow{book_id: b01001, book_author: Arthur Conan Doyle, book_name: The adventures of Sherlock Holmes, book_price: 10.0, book_pub_year: 1892}
==================
==================
2a) Starting delete of book price
Completed delete
==================
2b) Completed delete
==================
3) After
CassandraRow{book_id: b00300, book_author: Arthur Conan Doyle, book_name: The hounds of Baskerville, book_price: null, book_pub_year: 1901}
CassandraRow{book_id: b00001, book_author: Arthur Conan Doyle, book_name: A study in scarlet, book_price: null, book_pub_year: 1887}
CassandraRow{book_id: b00023, book_author: Arthur Conan Doyle, book_name: A sign of four, book_price: null, book_pub_year: 1890}
CassandraRow{book_id: b00501, book_author: Arthur Conan Doyle, book_name: The memoirs of Sherlock Holmes, book_price: null, book_pub_year: 1893}
deleteBooksRDD: com.datastax.spark.connector.rdd.CassandraTableScanRDD[com.datastax.spark.connector.CassandraRow] = CassandraTableScanRDD[145] at RDD at CassandraRDD.scala:19
Étapes suivantes
Pour effectuer des opérations d’agrégation et de copie de données, consultez :