Muokkaa

Jaa


Mutex Constructors

Definition

Initializes a new instance of the Mutex class.

Overloads

Mutex()

Initializes a new instance of the Mutex class with default properties.

Mutex(Boolean)

Initializes a new instance of the Mutex class with a Boolean value that indicates whether the calling thread should have initial ownership of the mutex.

Mutex(Boolean, String)

Initializes a new instance of the Mutex class with a Boolean value that indicates whether the calling thread should have initial ownership of the mutex, and a string that is the name of the mutex.

Mutex(Boolean, String, Boolean)

Initializes a new instance of the Mutex class with a Boolean value that indicates whether the calling thread should have initial ownership of the mutex, a string that is the name of the mutex, and a Boolean value that, when the method returns, indicates whether the calling thread was granted initial ownership of the mutex.

Mutex(Boolean, String, Boolean, MutexSecurity)

Initializes a new instance of the Mutex class with a Boolean value that indicates whether the calling thread should have initial ownership of the mutex, a string that is the name of the mutex, a Boolean variable that, when the method returns, indicates whether the calling thread was granted initial ownership of the mutex, and the access control security to be applied to the named mutex.

Mutex()

Source:
Mutex.cs
Source:
Mutex.cs
Source:
Mutex.cs

Initializes a new instance of the Mutex class with default properties.

public:
 Mutex();
public Mutex ();
Public Sub New ()

Examples

The following code example shows how a local Mutex object is used to synchronize access to a protected resource. The thread that creates the mutex does not own it initially.

// This example shows how a Mutex is used to synchronize access
// to a protected resource. Unlike Monitor, Mutex can be used with
// WaitHandle.WaitAll and WaitAny, and can be passed across
// AppDomain boundaries.
using namespace System;
using namespace System::Threading;
const int numIterations = 1;
const int numThreads = 3;
ref class Test
{
public:

   // Create a new Mutex. The creating thread does not own the
   // Mutex.
   static Mutex^ mut = gcnew Mutex;
   static void MyThreadProc()
   {
      for ( int i = 0; i < numIterations; i++ )
      {
         UseResource();

      }
   }


private:

   // This method represents a resource that must be synchronized
   // so that only one thread at a time can enter.
   static void UseResource()
   {
      
      //Wait until it is OK to enter.
      mut->WaitOne();
      Console::WriteLine( "{0} has entered protected the area", Thread::CurrentThread->Name );
      
      // Place code to access non-reentrant resources here.
      // Simulate some work.
      Thread::Sleep( 500 );
      Console::WriteLine( "{0} is leaving protected the area\r\n", Thread::CurrentThread->Name );
      
      // Release the Mutex.
      mut->ReleaseMutex();
   }

};

int main()
{
   
   // Create the threads that will use the protected resource.
   for ( int i = 0; i < numThreads; i++ )
   {
      Thread^ myThread = gcnew Thread( gcnew ThreadStart( Test::MyThreadProc ) );
      myThread->Name = String::Format( "Thread {0}", i + 1 );
      myThread->Start();

   }
   
   // The main thread exits, but the application continues to 
   // run until all foreground threads have exited.
}
// This example shows how a Mutex is used to synchronize access
// to a protected resource. Unlike Monitor, Mutex can be used with
// WaitHandle.WaitAll and WaitAny, and can be passed across
// AppDomain boundaries.
 
using System;
using System.Threading;

class Test13
{
    // Create a new Mutex. The creating thread does not own the
    // Mutex.
    private static Mutex mut = new Mutex();
    private const int numIterations = 1;
    private const int numThreads = 3;

    static void Main()
    {
        // Create the threads that will use the protected resource.
        for(int i = 0; i < numThreads; i++)
        {
            Thread myThread = new Thread(new ThreadStart(MyThreadProc));
            myThread.Name = String.Format("Thread{0}", i + 1);
            myThread.Start();
        }

        // The main thread exits, but the application continues to
        // run until all foreground threads have exited.
    }

    private static void MyThreadProc()
    {
        for(int i = 0; i < numIterations; i++)
        {
            UseResource();
        }
    }

    // This method represents a resource that must be synchronized
    // so that only one thread at a time can enter.
    private static void UseResource()
    {
        // Wait until it is safe to enter.
        mut.WaitOne();

        Console.WriteLine("{0} has entered the protected area", 
            Thread.CurrentThread.Name);

        // Place code to access non-reentrant resources here.

        // Simulate some work.
        Thread.Sleep(500);

        Console.WriteLine("{0} is leaving the protected area\r\n", 
            Thread.CurrentThread.Name);
         
        // Release the Mutex.
        mut.ReleaseMutex();
    }
}
' This example shows how a Mutex is used to synchronize access
' to a protected resource. Unlike Monitor, Mutex can be used with
' WaitHandle.WaitAll and WaitAny, and can be passed across
' AppDomain boundaries.
 
Imports System.Threading

Class Test
    ' Create a new Mutex. The creating thread does not own the
    ' Mutex.
    Private Shared mut As New Mutex()
    Private Const numIterations As Integer = 1
    Private Const numThreads As Integer = 3

    <MTAThread> _
    Shared Sub Main()
        ' Create the threads that will use the protected resource.
        Dim i As Integer
        For i = 1 To numThreads
            Dim myThread As New Thread(AddressOf MyThreadProc)
            myThread.Name = [String].Format("Thread{0}", i)
            myThread.Start()
        Next i

        ' The main thread exits, but the application continues to
        ' run until all foreground threads have exited.

    End Sub

    Private Shared Sub MyThreadProc()
        Dim i As Integer
        For i = 1 To numIterations
            UseResource()
        Next i
    End Sub

    ' This method represents a resource that must be synchronized
    ' so that only one thread at a time can enter.
    Private Shared Sub UseResource()
        ' Wait until it is safe to enter.
        mut.WaitOne()

        Console.WriteLine("{0} has entered protected area", _
            Thread.CurrentThread.Name)

        ' Place code to access non-reentrant resources here.

        ' Simulate some work
        Thread.Sleep(500)

        Console.WriteLine("{0} is leaving protected area" & vbCrLf, _
            Thread.CurrentThread.Name)

        ' Release Mutex.
        mut.ReleaseMutex()
    End Sub
End Class

Remarks

Calling this constructor overload is the same as calling the Mutex(Boolean) constructor overload and specifying false for initial ownership of the mutex. That is, the calling thread does not own the mutex.

See also

Applies to

Mutex(Boolean)

Source:
Mutex.cs
Source:
Mutex.cs
Source:
Mutex.cs

Initializes a new instance of the Mutex class with a Boolean value that indicates whether the calling thread should have initial ownership of the mutex.

public:
 Mutex(bool initiallyOwned);
public Mutex (bool initiallyOwned);
new System.Threading.Mutex : bool -> System.Threading.Mutex
Public Sub New (initiallyOwned As Boolean)

Parameters

initiallyOwned
Boolean

true to give the calling thread initial ownership of the mutex; otherwise, false.

Examples

The following code example shows how a local Mutex object is used to synchronize access to a protected resource. The thread that creates the Mutex owns it initially.

using namespace System;
using namespace System::Threading;

const int numIterations = 1;
const int numThreads = 3;

ref class Test
{
public:

   // Create a new Mutex. The creating thread owns the
   // Mutex.
   static Mutex^ mut = gcnew Mutex( true );
   static void MyThreadProc()
   {
      for ( int i = 0; i < numIterations; i++ )
      {
         UseResource();

      }
   }


private:

   // This method represents a resource that must be synchronized
   // so that only one thread at a time can enter.
   static void UseResource()
   {
      
      //Wait until it is OK to enter.
      mut->WaitOne();
      Console::WriteLine( "{0} has entered protected the area", Thread::CurrentThread->Name );
      
      // Place code to access non-reentrant resources here.
      // Simulate some work.
      Thread::Sleep( 500 );
      Console::WriteLine( "{0} is leaving protected the area\r\n", Thread::CurrentThread->Name );
      
      // Release the Mutex.
      mut->ReleaseMutex();
   }

};

int main()
{
   
   // Initialize the Mutex.
   Mutex^ mut = Test::mut;
   
   // Create the threads that will use the protected resource.
   for ( int i = 0; i < numThreads; i++ )
   {
      Thread^ myThread = gcnew Thread( gcnew ThreadStart( Test::MyThreadProc ) );
      myThread->Name = String::Format( "Thread {0}", i + 1 );
      myThread->Start();

   }
   
   // Wait one second before allowing other threads to
   // acquire the Mutex.
   Console::WriteLine( "Creating thread owns the Mutex." );
   Thread::Sleep( 1000 );
   Console::WriteLine( "Creating thread releases the Mutex.\r\n" );
   mut->ReleaseMutex();
}
// The example displays output like the following:
//       Creating thread owns the Mutex.
//       Creating thread releases the Mutex.
//       
//       Thread1 has entered the protected area
//       Thread1 is leaving the protected area
//       
//       Thread2 has entered the protected area
//       Thread2 is leaving the protected area
//       
//       Thread3 has entered the protected area
//       Thread3 is leaving the protected area
using System;
using System.Threading;

class Test
{
    private static Mutex mut;
    private const int numIterations = 1;
    private const int numThreads = 3;

    static void Main()
    {
        // Create a new Mutex. The creating thread owns the Mutex.
        mut = new Mutex(true);
        // Create the threads that will use the protected resource.
        for(int i = 0; i < numThreads; i++)
        {
            Thread myThread = new Thread(new ThreadStart(MyThreadProc));
            myThread.Name = String.Format("Thread{0}", i + 1);
            myThread.Start();
        }

        // Wait one second before allowing other threads to
        // acquire the Mutex.
        Console.WriteLine("Creating thread owns the Mutex.");
        Thread.Sleep(1000);

        Console.WriteLine("Creating thread releases the Mutex.\r\n");
        mut.ReleaseMutex();
    }

    private static void MyThreadProc()
    {
        for(int i = 0; i < numIterations; i++)
        {
            UseResource();
        }
    }

    // This method represents a resource that must be synchronized
    // so that only one thread at a time can enter.
    private static void UseResource()
    {
        // Wait until it is safe to enter.
        mut.WaitOne();

        Console.WriteLine("{0} has entered the protected area", 
            Thread.CurrentThread.Name);

        // Place code to access non-reentrant resources here.

        // Simulate some work.
        Thread.Sleep(500);

        Console.WriteLine("{0} is leaving the protected area\r\n", 
            Thread.CurrentThread.Name);
         
        // Release the Mutex.
        mut.ReleaseMutex();
    }
}
// The example displays output like the following:
//       Creating thread owns the Mutex.
//       Creating thread releases the Mutex.
//       
//       Thread1 has entered the protected area
//       Thread1 is leaving the protected area
//       
//       Thread2 has entered the protected area
//       Thread2 is leaving the protected area
//       
//       Thread3 has entered the protected area
//       Thread3 is leaving the protected area
Imports System.Threading

Class Test
    ' Create a new Mutex. The creating thread owns the
    ' Mutex.
    Private Shared mut As New Mutex(True)
    Private Const numIterations As Integer = 1
    Private Const numThreads As Integer = 3

    <MTAThread> _
    Shared Sub Main()
        ' Create the threads that will use the protected resource.
        Dim i As Integer
        For i = 1 To numThreads
            Dim myThread As New Thread(AddressOf MyThreadProc)
            myThread.Name = [String].Format("Thread{0}", i)
            myThread.Start()
        Next i

        ' Wait one second before allowing other threads to
        ' acquire the Mutex.
        Console.WriteLine("Creating thread owns the Mutex.")
        Thread.Sleep(1000)

        Console.WriteLine("Creating thread releases the Mutex." & vbCrLf)
        mut.ReleaseMutex()
    End Sub

    Private Shared Sub MyThreadProc()
        Dim i As Integer
        For i = 1 To numIterations
            UseResource()
        Next i
    End Sub

    ' This method represents a resource that must be synchronized
    ' so that only one thread at a time can enter.
    Private Shared Sub UseResource()
        ' Wait until it is safe to enter.
        mut.WaitOne()

        Console.WriteLine("{0} has entered protected area", _
            Thread.CurrentThread.Name)

        ' Place code to access non-reentrant resources here.

        ' Simulate some work
        Thread.Sleep(500)

        Console.WriteLine("{0} is leaving protected area" & vbCrLf, _
            Thread.CurrentThread.Name)

        ' Release Mutex.
        mut.ReleaseMutex()
    End Sub
End Class
' The example displays output like the following:
'       Creating thread owns the Mutex.
'       Creating thread releases the Mutex.
'       
'       Thread1 has entered the protected area
'       Thread1 is leaving the protected area
'       
'       Thread2 has entered the protected area
'       Thread2 is leaving the protected area
'       
'       Thread3 has entered the protected area
'       Thread3 is leaving the protected area

See also

Applies to

Mutex(Boolean, String)

Source:
Mutex.cs
Source:
Mutex.cs
Source:
Mutex.cs

Initializes a new instance of the Mutex class with a Boolean value that indicates whether the calling thread should have initial ownership of the mutex, and a string that is the name of the mutex.

public:
 Mutex(bool initiallyOwned, System::String ^ name);
[System.Security.SecurityCritical]
public Mutex (bool initiallyOwned, string name);
public Mutex (bool initiallyOwned, string? name);
public Mutex (bool initiallyOwned, string name);
[<System.Security.SecurityCritical>]
new System.Threading.Mutex : bool * string -> System.Threading.Mutex
new System.Threading.Mutex : bool * string -> System.Threading.Mutex
Public Sub New (initiallyOwned As Boolean, name As String)

Parameters

initiallyOwned
Boolean

true to give the calling thread initial ownership of the named system mutex if the named system mutex is created as a result of this call; otherwise, false.

name
String

The name, if the synchronization object is to be shared with other processes; otherwise, null or an empty string. The name is case-sensitive. The backslash character (\) is reserved and may only be used to specify a namespace. For more information on namespaces, see the remarks section. There may be further restrictions on the name depending on the operating system. For example, on Unix-based operating systems, the name after excluding the namespace must be a valid file name.

Attributes

Exceptions

The named mutex exists and has access control security, but the user does not have FullControl.

name is invalid. This can be for various reasons, including some restrictions that may be placed by the operating system, such as an unknown prefix or invalid characters. Note that the name and common prefixes "Global\" and "Local\" are case-sensitive.

-or-

There was some other error. The HResult property may provide more information.

Windows only: name specified an unknown namespace. See Object Names for more information.

The name is too long. Length restrictions may depend on the operating system or configuration.

A synchronization object with the provided name cannot be created. A synchronization object of a different type might have the same name.

.NET Framework only: name is longer than MAX_PATH (260 characters).

Examples

The following example shows how a named mutex is used to signal between threads running in two separate processes.

Run this program from two or more command windows. Each process creates a Mutex object that represents the named mutex MyMutex. The named mutex is a system object whose lifetime is bounded by the lifetimes of the Mutex objects that represent it. The named mutex is created when the first process creates its Mutex object; in this example, the named mutex is owned by the first process that runs the program. The named mutex is destroyed when all the Mutex objects that represent it have been released.

The constructor overload used in this example cannot tell the calling thread whether initial ownership of the named mutex was granted. You should not use this constructor to request initial ownership unless you can be certain that the thread will create the named mutex.

using namespace System;
using namespace System::Threading;

int main()
{
   // Create the named mutex. Only one system object named 
   // "MyMutex" can exist; the local Mutex object represents 
   // this system object, regardless of which process or thread
   // caused "MyMutex" to be created.
   Mutex^ m = gcnew Mutex( false,"MyMutex" );
   
   // Try to gain control of the named mutex. If the mutex is 
   // controlled by another thread, wait for it to be released.        
   Console::WriteLine(  "Waiting for the Mutex." );
   m->WaitOne();
   
   // Keep control of the mutex until the user presses
   // ENTER.
   Console::WriteLine( "This application owns the mutex. "
   "Press ENTER to release the mutex and exit." );
   Console::ReadLine();
   m->ReleaseMutex();
}
using System;
using System.Threading;

public class Test1
{
    public static void Main()
    {
        // Create the named mutex. Only one system object named 
        // "MyMutex" can exist; the local Mutex object represents 
        // this system object, regardless of which process or thread
        // caused "MyMutex" to be created.
        Mutex m = new Mutex(false, "MyMutex");
        
        // Try to gain control of the named mutex. If the mutex is 
        // controlled by another thread, wait for it to be released.        
        Console.WriteLine("Waiting for the Mutex.");
        m.WaitOne();

        // Keep control of the mutex until the user presses
        // ENTER.
        Console.WriteLine("This application owns the mutex. " +
            "Press ENTER to release the mutex and exit.");
        Console.ReadLine();

        m.ReleaseMutex();
    }
}
Imports System.Threading

Public Class Test
   Public Shared Sub Main()
      ' Create the named mutex. Only one system object named 
      ' "MyMutex" can exist; the local Mutex object represents 
      ' this system object, regardless of which process or thread
      ' caused "MyMutex" to be created.
      Dim m As New Mutex(False, "MyMutex")
      
      ' Try to gain control of the named mutex. If the mutex is 
      ' controlled by another thread, wait for it to be released.        
      Console.WriteLine("Waiting for the Mutex.")
      m.WaitOne()
      
      ' Keep control of the mutex until the user presses
      ' ENTER.
      Console.WriteLine("This application owns the mutex. " _
          & "Press ENTER to release the mutex and exit.")
      Console.ReadLine()
      
      m.ReleaseMutex()
   End Sub 
End Class

Remarks

The name may be prefixed with Global\ or Local\ to specify a namespace. When the Global namespace is specified, the synchronization object may be shared with any processes on the system. When the Local namespace is specified, which is also the default when no namespace is specified, the synchronization object may be shared with processes in the same session. On Windows, a session is a login session, and services typically run in a different non-interactive session. On Unix-like operating systems, each shell has its own session. Session-local synchronization objects may be appropriate for synchronizing between processes with a parent/child relationship where they all run in the same session. For more information about synchronization object names on Windows, see Object Names.

If a name is provided and a synchronization object of the requested type already exists in the namespace, the existing synchronization object is used. If a synchronization object of a different type already exists in the namespace, a WaitHandleCannotBeOpenedException is thrown. Otherwise, a new synchronization object is created.

If name is not null and initiallyOwned is true, the calling thread owns the mutex only if the named system mutex was created as a result of this call. Since there is no mechanism for determining whether the named system mutex was created, it is better to specify false for initiallyOwned when calling this constructor overload. You can use the Mutex(Boolean, String, Boolean) constructor if you need to determine initial ownership.

This constructor initializes a Mutex object that represents a named system mutex. You can create multiple Mutex objects that represent the same named system mutex.

If the named mutex has already been created with access control security, and the caller does not have MutexRights.FullControl, an exception is thrown. To open an existing named mutex with only those permissions needed for synchronizing thread activities, see the OpenExisting method.

If you specify null or an empty string for name, a local mutex is created, as if you had called the Mutex(Boolean) constructor. In this case, createdNew is always true.

Because they are system-wide, named mutexes can be used to coordinate resource use across process boundaries.

Note

On a server that is running Terminal Services, a named system mutex can have two levels of visibility. If its name begins with the prefix Global\, the mutex is visible in all terminal server sessions. If its name begins with the prefix Local\, the mutex is visible only in the terminal server session where it was created. In that case, a separate mutex with the same name can exist in each of the other terminal server sessions on the server. If you do not specify a prefix when you create a named mutex, it takes the prefix Local\. Within a terminal server session, two mutexes whose names differ only by their prefixes are separate mutexes, and both are visible to all processes in the terminal server session. That is, the prefix names Global\ and Local\ describe the scope of the mutex name relative to terminal server sessions, not relative to processes.

Caution

By default, a named mutex is not restricted to the user that created it. Other users may be able to open and use the mutex, including interfering with the mutex by entering the mutex and not exiting it. On Unix-like operating systems, the file system is used in the implementation of named mutexes, and other users may be able to interfere with named mutexes in more significant ways. On Windows, to restrict access to specific users, you can use a constructor overload or MutexAcl and pass in a MutexSecurity when creating the named mutex. On Unix-like operating systems, currently there is no way to restrict access to a named mutex. Avoid using named mutexes without access restrictions on systems that might have untrusted users running code.

The backslash (\) is a reserved character in a mutex name. Don't use a backslash (\) in a mutex name except as specified in the note on using mutexes in terminal server sessions. Otherwise, a DirectoryNotFoundException may be thrown, even though the name of the mutex represents an existing file.

See also

Applies to

Mutex(Boolean, String, Boolean)

Source:
Mutex.cs
Source:
Mutex.cs
Source:
Mutex.cs

Initializes a new instance of the Mutex class with a Boolean value that indicates whether the calling thread should have initial ownership of the mutex, a string that is the name of the mutex, and a Boolean value that, when the method returns, indicates whether the calling thread was granted initial ownership of the mutex.

public:
 Mutex(bool initiallyOwned, System::String ^ name, [Runtime::InteropServices::Out] bool % createdNew);
[System.Security.SecurityCritical]
public Mutex (bool initiallyOwned, string name, out bool createdNew);
public Mutex (bool initiallyOwned, string? name, out bool createdNew);
public Mutex (bool initiallyOwned, string name, out bool createdNew);
[<System.Security.SecurityCritical>]
new System.Threading.Mutex : bool * string * bool -> System.Threading.Mutex
new System.Threading.Mutex : bool * string * bool -> System.Threading.Mutex
Public Sub New (initiallyOwned As Boolean, name As String, ByRef createdNew As Boolean)

Parameters

initiallyOwned
Boolean

true to give the calling thread initial ownership of the named system mutex if the named system mutex is created as a result of this call; otherwise, false.

name
String

The name, if the synchronization object is to be shared with other processes; otherwise, null or an empty string. The name is case-sensitive. The backslash character (\) is reserved and may only be used to specify a namespace. For more information on namespaces, see the remarks section. There may be further restrictions on the name depending on the operating system. For example, on Unix-based operating systems, the name after excluding the namespace must be a valid file name.

createdNew
Boolean

When this method returns, contains a Boolean that is true if a local mutex was created (that is, if name is null or an empty string) or if the specified named system mutex was created; false if the specified named system mutex already existed. This parameter is passed uninitialized.

Attributes

Exceptions

The named mutex exists and has access control security, but the user does not have FullControl.

name is invalid. This can be for various reasons, including some restrictions that may be placed by the operating system, such as an unknown prefix or invalid characters. Note that the name and common prefixes "Global\" and "Local\" are case-sensitive.

-or-

There was some other error. The HResult property may provide more information.

Windows only: name specified an unknown namespace. See Object Names for more information.

The name is too long. Length restrictions may depend on the operating system or configuration.

A synchronization object with the provided name cannot be created. A synchronization object of a different type might have the same name.

.NET Framework only: name is longer than MAX_PATH (260 characters).

Examples

The following code example shows how a named mutex is used to signal between processes or threads. Run this program from two or more command windows. Each process creates a Mutex object that represents the named mutex "MyMutex". The named mutex is a system object. In this example, its lifetime is bounded by the lifetimes of the Mutex objects that represent it. The named mutex is created when the first process creates its local Mutex object, and destroyed when all the Mutex objects that represent it have been released. The named mutex is initially owned by the first process. The second process and any subsequent processes wait for earlier processes to release the named mutex.

// This example shows how a named mutex is used to signal between
// processes or threads.
// Run this program from two (or more) command windows. Each process
// creates a Mutex object that represents the named mutex "MyMutex".
// The named mutex is a system object whose lifetime is bounded by the
// lifetimes of the Mutex objects that represent it. The named mutex
// is created when the first process creates its local Mutex; in this
// example, the named mutex is owned by the first process. The named 
// mutex is destroyed when all the Mutex objects that represent it
// have been released. 
// The second process (and any subsequent process) waits for earlier
// processes to release the named mutex.
using namespace System;
using namespace System::Threading;
int main()
{
   
   // Set this variable to false if you do not want to request 
   // initial ownership of the named mutex.
   bool requestInitialOwnership = true;
   bool mutexWasCreated;
   
   // Request initial ownership of the named mutex by passing
   // true for the first parameter. Only one system object named 
   // "MyMutex" can exist; the local Mutex object represents 
   // this system object. If "MyMutex" is created by this call,
   // then mutexWasCreated contains true; otherwise, it contains
   // false.
   Mutex^ m = gcnew Mutex( requestInitialOwnership, "MyMutex", mutexWasCreated );
   
   // This thread owns the mutex only if it both requested 
   // initial ownership and created the named mutex. Otherwise,
   // it can request the named mutex by calling WaitOne.
   if (  !(requestInitialOwnership && mutexWasCreated) )
   {
      Console::WriteLine(  "Waiting for the named mutex." );
      m->WaitOne();
   }

   
   // Once the process has gained control of the named mutex,
   // hold onto it until the user presses ENTER.
   Console::WriteLine(  "This process owns the named mutex. "
    "Press ENTER to release the mutex and exit." );
   Console::ReadLine();
   
   // Call ReleaseMutex to allow other threads to gain control
   // of the named mutex. If you keep a reference to the local
   // Mutex, you can call WaitOne to request control of the 
   // named mutex.
   m->ReleaseMutex();
}
// This example shows how a named mutex is used to signal between
// processes or threads.
// Run this program from two (or more) command windows. Each process
// creates a Mutex object that represents the named mutex "MyMutex".
// The named mutex is a system object whose lifetime is bounded by the
// lifetimes of the Mutex objects that represent it. The named mutex
// is created when the first process creates its local Mutex; in this
// example, the named mutex is owned by the first process. The named 
// mutex is destroyed when all the Mutex objects that represent it
// have been released. 
// The second process (and any subsequent process) waits for earlier
// processes to release the named mutex.

using System;
using System.Threading;

public class Test12
{
    public static void Main()
    {
        // Set this variable to false if you do not want to request 
        // initial ownership of the named mutex.
        bool requestInitialOwnership = true;
        bool mutexWasCreated;

        // Request initial ownership of the named mutex by passing
        // true for the first parameter. Only one system object named 
        // "MyMutex" can exist; the local Mutex object represents 
        // this system object. If "MyMutex" is created by this call,
        // then mutexWasCreated contains true; otherwise, it contains
        // false.
        Mutex m = new Mutex(requestInitialOwnership, 
                            "MyMutex", 
                            out mutexWasCreated);
        
        // This thread owns the mutex only if it both requested 
        // initial ownership and created the named mutex. Otherwise,
        // it can request the named mutex by calling WaitOne.
        if (!(requestInitialOwnership && mutexWasCreated))
        {
            Console.WriteLine("Waiting for the named mutex.");
            m.WaitOne();
        }

        // Once the process has gained control of the named mutex,
        // hold onto it until the user presses ENTER.
        Console.WriteLine("This process owns the named mutex. " +
            "Press ENTER to release the mutex and exit.");
        Console.ReadLine();

        // Call ReleaseMutex to allow other threads to gain control
        // of the named mutex. If you keep a reference to the local
        // Mutex, you can call WaitOne to request control of the 
        // named mutex.
        m.ReleaseMutex();
    }
}
' This example shows how a named mutex is used to signal between
' processes or threads.
' Run this program from two (or more) command windows. Each process
' creates a Mutex object that represents the named mutex "MyMutex".
' The named mutex is a system object whose lifetime is bounded by the
' lifetimes of the Mutex objects that represent it. The named mutex
' is created when the first process creates its local Mutex; in this
' example, the named mutex is owned by the first process. The named 
' mutex is destroyed when all the Mutex objects that represent it
' have been released. 
' The second process (and any subsequent process) waits for earlier
' processes to release the named mutex.

Imports System.Threading

Public Class Test
   
   <MTAThread> _
   Public Shared Sub Main()
      ' Set this variable to false if you do not want to request 
      ' initial ownership of the named mutex.
      Dim requestInitialOwnership As Boolean = True
      Dim mutexWasCreated As Boolean
      
      ' Request initial ownership of the named mutex by passing
      ' true for the first parameter. Only one system object named 
      ' "MyMutex" can exist; the local Mutex object represents 
      ' this system object. If "MyMutex" is created by this call,
      ' then mutexWasCreated contains true; otherwise, it contains
      ' false.
      Dim m As New Mutex(requestInitialOwnership, "MyMutex", _
          mutexWasCreated)
      
      ' This thread owns the mutex only if it both requested 
      ' initial ownership and created the named mutex. Otherwise,
      ' it can request the named mutex by calling WaitOne.
      If Not (requestInitialOwnership And mutexWasCreated) Then
         Console.WriteLine("Waiting for the named mutex.")
         m.WaitOne()
      End If
      
      ' Once the process has gained control of the named mutex,
      ' hold onto it until the user presses ENTER.
      Console.WriteLine("This process owns the named mutex. " _
          & "Press ENTER to release the mutex and exit.")
      Console.ReadLine()
      
      ' Call ReleaseMutex to allow other threads to gain control
      ' of the named mutex. If you keep a reference to the local
      ' Mutex, you can call WaitOne to request control of the 
      ' named mutex.
      m.ReleaseMutex()
   End Sub
End Class

Remarks

The name may be prefixed with Global\ or Local\ to specify a namespace. When the Global namespace is specified, the synchronization object may be shared with any processes on the system. When the Local namespace is specified, which is also the default when no namespace is specified, the synchronization object may be shared with processes in the same session. On Windows, a session is a login session, and services typically run in a different non-interactive session. On Unix-like operating systems, each shell has its own session. Session-local synchronization objects may be appropriate for synchronizing between processes with a parent/child relationship where they all run in the same session. For more information about synchronization object names on Windows, see Object Names.

If a name is provided and a synchronization object of the requested type already exists in the namespace, the existing synchronization object is used. If a synchronization object of a different type already exists in the namespace, a WaitHandleCannotBeOpenedException is thrown. Otherwise, a new synchronization object is created.

If name is not null and initiallyOwned is true, the calling thread owns the named mutex only if createdNew is true after the call. Otherwise the thread can request the mutex by calling the WaitOne method.

This constructor initializes a Mutex object that represents a named system mutex. You can create multiple Mutex objects that represent the same named system mutex.

If the named mutex has already been created with access control security, and the caller does not have MutexRights.FullControl rights, an exception is thrown. To open an existing named mutex with only those permissions needed for synchronizing thread activities, see the OpenExisting method.

If you specify null or an empty string for name, a local mutex is created, as if you had called the Mutex(Boolean) constructor. In this case, createdNew is always true.

Because they are system-wide, named mutexes can be used to coordinate resource use across process boundaries.

Note

On a server that is running Terminal Services, a named system mutex can have two levels of visibility. If its name begins with the prefix Global\, the mutex is visible in all terminal server sessions. If its name begins with the prefix Local\, the mutex is visible only in the terminal server session where it was created. In that case, a separate mutex with the same name can exist in each of the other terminal server sessions on the server. If you do not specify a prefix when you create a named mutex, it takes the prefix Local\. Within a terminal server session, two mutexes whose names differ only by their prefixes are separate mutexes, and both are visible to all processes in the terminal server session. That is, the prefix names Global\ and Local\ describe the scope of the mutex name relative to terminal server sessions, not relative to processes.

Caution

By default, a named mutex is not restricted to the user that created it. Other users may be able to open and use the mutex, including interfering with the mutex by entering the mutex and not exiting it. On Unix-like operating systems, the file system is used in the implementation of named mutexes, and other users may be able to interfere with named mutexes in more significant ways. On Windows, to restrict access to specific users, you can use a constructor overload or MutexAcl and pass in a MutexSecurity when creating the named mutex. On Unix-like operating systems, currently there is no way to restrict access to a named mutex. Avoid using named mutexes without access restrictions on systems that might have untrusted users running code.

The backslash (\) is a reserved character in a mutex name. Don't use a backslash (\) in a mutex name except as specified in the note on using mutexes in terminal server sessions. Otherwise, a DirectoryNotFoundException may be thrown, even though the name of the mutex represents an existing file.

See also

Applies to

Mutex(Boolean, String, Boolean, MutexSecurity)

Initializes a new instance of the Mutex class with a Boolean value that indicates whether the calling thread should have initial ownership of the mutex, a string that is the name of the mutex, a Boolean variable that, when the method returns, indicates whether the calling thread was granted initial ownership of the mutex, and the access control security to be applied to the named mutex.

public:
 Mutex(bool initiallyOwned, System::String ^ name, [Runtime::InteropServices::Out] bool % createdNew, System::Security::AccessControl::MutexSecurity ^ mutexSecurity);
public Mutex (bool initiallyOwned, string name, out bool createdNew, System.Security.AccessControl.MutexSecurity mutexSecurity);
[System.Security.SecurityCritical]
public Mutex (bool initiallyOwned, string name, out bool createdNew, System.Security.AccessControl.MutexSecurity mutexSecurity);
new System.Threading.Mutex : bool * string * bool * System.Security.AccessControl.MutexSecurity -> System.Threading.Mutex
[<System.Security.SecurityCritical>]
new System.Threading.Mutex : bool * string * bool * System.Security.AccessControl.MutexSecurity -> System.Threading.Mutex
Public Sub New (initiallyOwned As Boolean, name As String, ByRef createdNew As Boolean, mutexSecurity As MutexSecurity)

Parameters

initiallyOwned
Boolean

true to give the calling thread initial ownership of the named system mutex if the named system mutex is created as a result of this call; otherwise, false.

name
String

The name, if the synchronization object is to be shared with other processes; otherwise, null or an empty string. The name is case-sensitive. The backslash character (\) is reserved and may only be used to specify a namespace. For more information on namespaces, see the remarks section. There may be further restrictions on the name depending on the operating system. For example, on Unix-based operating systems, the name after excluding the namespace must be a valid file name.

createdNew
Boolean

When this method returns, contains a Boolean that is true if a local mutex was created (that is, if name is null or an empty string) or if the specified named system mutex was created; false if the specified named system mutex already existed. This parameter is passed uninitialized.

mutexSecurity
MutexSecurity

A MutexSecurity object that represents the access control security to be applied to the named system mutex.

Attributes

Exceptions

name is invalid. This can be for various reasons, including some restrictions that may be placed by the operating system, such as an unknown prefix or invalid characters. Note that the name and common prefixes "Global\" and "Local\" are case-sensitive.

-or-

There was some other error. The HResult property may provide more information.

Windows only: name specified an unknown namespace. See Object Names for more information.

The name is too long. Length restrictions may depend on the operating system or configuration.

The named mutex exists and has access control security, but the user does not have FullControl.

A synchronization object with the provided name cannot be created. A synchronization object of a different type might have the same name.

.NET Framework only: name is longer than MAX_PATH (260 characters).

Examples

The following code example demonstrates the cross-process behavior of a named mutex with access control security. The example uses the OpenExisting(String) method overload to test for the existence of a named mutex.

If the mutex does not exist, it is created with initial ownership and access control security that denies the current user the right to use the mutex, but grants the right to read and change permissions on the mutex.

If you run the compiled example from two command windows, the second copy will throw an access violation exception on the call to OpenExisting(String). The exception is caught, and the example uses the OpenExisting(String, MutexRights) method overload to open the mutex with the rights needed to read and change the permissions.

After the permissions are changed, the mutex is opened with the rights required to enter and release it. If you run the compiled example from a third command window, it runs using the new permissions.

using namespace System;
using namespace System::Threading;
using namespace System::Security::AccessControl;
using namespace System::Security::Permissions;

public ref class Example
{
public:
   [SecurityPermissionAttribute(SecurityAction::Demand,Flags=SecurityPermissionFlag::UnmanagedCode)]
   static void Main()
   {
      String^ mutexName = L"MutexExample4";

      Mutex^ m = nullptr;
      bool doesNotExist = false;
      bool unauthorized = false;
      
      // The value of this variable is set by the mutex
      // constructor. It is true if the named system mutex was
      // created, and false if the named mutex already existed.
      //
      bool mutexWasCreated = false;

      // Attempt to open the named mutex.
      try
      {
         // Open the mutex with (MutexRights.Synchronize |
         // MutexRights.Modify), to enter and release the
         // named mutex.
         //
         m = Mutex::OpenExisting( mutexName );
      }
      catch ( WaitHandleCannotBeOpenedException^ ) 
      {
         Console::WriteLine( L"Mutex does not exist." );
         doesNotExist = true;
      }
      catch ( UnauthorizedAccessException^ ex ) 
      {
         Console::WriteLine( L"Unauthorized access: {0}", ex->Message );
         unauthorized = true;
      }

      // There are three cases: (1) The mutex does not exist.
      // (2) The mutex exists, but the current user doesn't
      // have access. (3) The mutex exists and the user has
      // access.
      //
      if ( doesNotExist )
      {
         // The mutex does not exist, so create it.
         // Create an access control list (ACL) that denies the
         // current user the right to enter or release the
         // mutex, but allows the right to read and change
         // security information for the mutex.
         //
         String^ user = String::Concat( Environment::UserDomainName, L"\\",
            Environment::UserName );
         MutexSecurity^ mSec = gcnew MutexSecurity;

         MutexAccessRule^ rule = gcnew MutexAccessRule( user,
            static_cast<MutexRights>(
               MutexRights::Synchronize |
               MutexRights::Modify),
            AccessControlType::Deny );
         mSec->AddAccessRule( rule );

         rule = gcnew MutexAccessRule( user,
            static_cast<MutexRights>(
               MutexRights::ReadPermissions |
                MutexRights::ChangePermissions),
            AccessControlType::Allow );
         mSec->AddAccessRule( rule );
         
         // Create a Mutex object that represents the system
         // mutex named by the constant 'mutexName', with
         // initial ownership for this thread, and with the
         // specified security access. The Boolean value that
         // indicates creation of the underlying system object
         // is placed in mutexWasCreated.
         //
         m = gcnew Mutex( true,mutexName, mutexWasCreated,mSec );
         
         // If the named system mutex was created, it can be
         // used by the current instance of this program, even
         // though the current user is denied access. The current
         // program owns the mutex. Otherwise, exit the program.
         //
         if ( mutexWasCreated )
         {
            Console::WriteLine( L"Created the mutex." );
         }
         else
         {
            Console::WriteLine( L"Unable to create the mutex." );
            return;
         }
      }
      else if ( unauthorized )
      {
         // Open the mutex to read and change the access control
         // security. The access control security defined above
         // allows the current user to do this.
         //
         try
         {
            m = Mutex::OpenExisting( mutexName,
               static_cast<MutexRights>(
                  MutexRights::ReadPermissions |
                  MutexRights::ChangePermissions) );
            
            // Get the current ACL. This requires
            // MutexRights.ReadPermissions.
            MutexSecurity^ mSec = m->GetAccessControl();

            String^ user = String::Concat( Environment::UserDomainName,
               L"\\", Environment::UserName );
            
            // First, the rule that denied the current user
            // the right to enter and release the mutex must
            // be removed.
            MutexAccessRule^ rule = gcnew MutexAccessRule( user,
               static_cast<MutexRights>(
                  MutexRights::Synchronize |
                  MutexRights::Modify),
               AccessControlType::Deny );
            mSec->RemoveAccessRule( rule );
            
            // Now grant the user the correct rights.
            //
            rule = gcnew MutexAccessRule( user,
               static_cast<MutexRights>(
                  MutexRights::Synchronize |
                  MutexRights::Modify),
               AccessControlType::Allow );
            mSec->AddAccessRule( rule );
            
            // Update the ACL. This requires
            // MutexRights.ChangePermissions.
            m->SetAccessControl( mSec );

            Console::WriteLine( L"Updated mutex security." );
            
            // Open the mutex with (MutexRights.Synchronize
            // | MutexRights.Modify), the rights required to
            // enter and release the mutex.
            //
            m = Mutex::OpenExisting( mutexName );
         }
         catch ( UnauthorizedAccessException^ ex ) 
         {
            Console::WriteLine(
               L"Unable to change permissions: {0}", ex->Message );
            return;
         }
      }
      
      // If this program created the mutex, it already owns
      // the mutex.
      //
      if ( !mutexWasCreated )
      {
         // Enter the mutex, and hold it until the program
         // exits.
         //
         try
         {
            Console::WriteLine( L"Wait for the mutex." );
            m->WaitOne();
            Console::WriteLine( L"Entered the mutex." );
         }
         catch ( UnauthorizedAccessException^ ex ) 
         {
            Console::WriteLine( L"Unauthorized access: {0}",
               ex->Message );
         }
      }

      Console::WriteLine( L"Press the Enter key to exit." );
      Console::ReadLine();
      m->ReleaseMutex();
      m->Dispose();
   }
};

int main()
{
   Example::Main();
}
using System;
using System.Threading;
using System.Security.AccessControl;

internal class Example
{
    internal static void Main()
    {
        const string mutexName = "MutexExample4";

        Mutex m = null;
        bool doesNotExist = false;
        bool unauthorized = false;

        // The value of this variable is set by the mutex
        // constructor. It is true if the named system mutex was
        // created, and false if the named mutex already existed.
        //
        bool mutexWasCreated = false;

        // Attempt to open the named mutex.
        try
        {
            // Open the mutex with (MutexRights.Synchronize |
            // MutexRights.Modify), to enter and release the
            // named mutex.
            //
            m = Mutex.OpenExisting(mutexName);
        }
        catch(WaitHandleCannotBeOpenedException)
        {
            Console.WriteLine("Mutex does not exist.");
            doesNotExist = true;
        }
        catch(UnauthorizedAccessException ex)
        {
            Console.WriteLine("Unauthorized access: {0}", ex.Message);
            unauthorized = true;
        }

        // There are three cases: (1) The mutex does not exist.
        // (2) The mutex exists, but the current user doesn't 
        // have access. (3) The mutex exists and the user has
        // access.
        //
        if (doesNotExist)
        {
            // The mutex does not exist, so create it.

            // Create an access control list (ACL) that denies the
            // current user the right to enter or release the 
            // mutex, but allows the right to read and change
            // security information for the mutex.
            //
            string user = Environment.UserDomainName + "\\"
                + Environment.UserName;
            var mSec = new MutexSecurity();

            MutexAccessRule rule = new MutexAccessRule(user, 
                MutexRights.Synchronize | MutexRights.Modify, 
                AccessControlType.Deny);
            mSec.AddAccessRule(rule);

            rule = new MutexAccessRule(user, 
                MutexRights.ReadPermissions | MutexRights.ChangePermissions,
                AccessControlType.Allow);
            mSec.AddAccessRule(rule);

            // Create a Mutex object that represents the system
            // mutex named by the constant 'mutexName', with
            // initial ownership for this thread, and with the
            // specified security access. The Boolean value that 
            // indicates creation of the underlying system object
            // is placed in mutexWasCreated.
            //
            m = new Mutex(true, mutexName, out mutexWasCreated, mSec);

            // If the named system mutex was created, it can be
            // used by the current instance of this program, even 
            // though the current user is denied access. The current
            // program owns the mutex. Otherwise, exit the program.
            // 
            if (mutexWasCreated)
            {
                Console.WriteLine("Created the mutex.");
            }
            else
            {
                Console.WriteLine("Unable to create the mutex.");
                return;
            }
        }
        else if (unauthorized)
        {
            // Open the mutex to read and change the access control
            // security. The access control security defined above
            // allows the current user to do this.
            //
            try
            {
                m = Mutex.OpenExisting(mutexName, 
                    MutexRights.ReadPermissions | MutexRights.ChangePermissions);

                // Get the current ACL. This requires 
                // MutexRights.ReadPermissions.
                MutexSecurity mSec = m.GetAccessControl();
                
                string user = Environment.UserDomainName + "\\"
                    + Environment.UserName;

                // First, the rule that denied the current user 
                // the right to enter and release the mutex must
                // be removed.
                MutexAccessRule rule = new MutexAccessRule(user, 
                     MutexRights.Synchronize | MutexRights.Modify,
                     AccessControlType.Deny);
                mSec.RemoveAccessRule(rule);

                // Now grant the user the correct rights.
                // 
                rule = new MutexAccessRule(user, 
                    MutexRights.Synchronize | MutexRights.Modify,
                    AccessControlType.Allow);
                mSec.AddAccessRule(rule);

                // Update the ACL. This requires
                // MutexRights.ChangePermissions.
                m.SetAccessControl(mSec);

                Console.WriteLine("Updated mutex security.");

                // Open the mutex with (MutexRights.Synchronize 
                // | MutexRights.Modify), the rights required to
                // enter and release the mutex.
                //
                m = Mutex.OpenExisting(mutexName);
            }
            catch(UnauthorizedAccessException ex)
            {
                Console.WriteLine("Unable to change permissions: {0}",
                    ex.Message);
                return;
            }
        }

        // If this program created the mutex, it already owns
        // the mutex.
        //
        if (!mutexWasCreated)
        {
            // Enter the mutex, and hold it until the program
            // exits.
            //
            try
            {
                Console.WriteLine("Wait for the mutex.");
                m.WaitOne();
                Console.WriteLine("Entered the mutex.");
            }
            catch(UnauthorizedAccessException ex)
            {
                Console.WriteLine("Unauthorized access: {0}", ex.Message);
            }
        }

        Console.WriteLine("Press the Enter key to exit.");
        Console.ReadLine();
        m.ReleaseMutex();
        m.Dispose();
    }
}
Imports System.Threading
Imports System.Security.AccessControl

Friend Class Example

    <MTAThread> _
    Friend Shared Sub Main()
        Const mutexName As String = "MutexExample4"

        Dim m As Mutex = Nothing
        Dim doesNotExist as Boolean = False
        Dim unauthorized As Boolean = False

        ' The value of this variable is set by the mutex
        ' constructor. It is True if the named system mutex was
        ' created, and False if the named mutex already existed.
        '
        Dim mutexWasCreated As Boolean

        ' Attempt to open the named mutex.
        Try
            ' Open the mutex with (MutexRights.Synchronize Or
            ' MutexRights.Modify), to enter and release the
            ' named mutex.
            '
            m = Mutex.OpenExisting(mutexName)
        Catch ex As WaitHandleCannotBeOpenedException
            Console.WriteLine("Mutex does not exist.")
            doesNotExist = True
        Catch ex As UnauthorizedAccessException
            Console.WriteLine("Unauthorized access: {0}", ex.Message)
            unauthorized = True
        End Try

        ' There are three cases: (1) The mutex does not exist.
        ' (2) The mutex exists, but the current user doesn't 
        ' have access. (3) The mutex exists and the user has
        ' access.
        '
        If doesNotExist Then
            ' The mutex does not exist, so create it.

            ' Create an access control list (ACL) that denies the
            ' current user the right to enter or release the 
            ' mutex, but allows the right to read and change
            ' security information for the mutex.
            '
            Dim user As String = Environment.UserDomainName _ 
                & "\" & Environment.UserName
            Dim mSec As New MutexSecurity()

            Dim rule As New MutexAccessRule(user, _
                MutexRights.Synchronize Or MutexRights.Modify, _
                AccessControlType.Deny)
            mSec.AddAccessRule(rule)

            rule = New MutexAccessRule(user, _
                MutexRights.ReadPermissions Or _
                MutexRights.ChangePermissions, _
                AccessControlType.Allow)
            mSec.AddAccessRule(rule)

            ' Create a Mutex object that represents the system
            ' mutex named by the constant 'mutexName', with
            ' initial ownership for this thread, and with the
            ' specified security access. The Boolean value that 
            ' indicates creation of the underlying system object
            ' is placed in mutexWasCreated.
            '
            m = New Mutex(True, mutexName, mutexWasCreated, mSec)

            ' If the named system mutex was created, it can be
            ' used by the current instance of this program, even 
            ' though the current user is denied access. The current
            ' program owns the mutex. Otherwise, exit the program.
            ' 
            If mutexWasCreated Then
                Console.WriteLine("Created the mutex.")
            Else
                Console.WriteLine("Unable to create the mutex.")
                Return
            End If

        ElseIf unauthorized Then

            ' Open the mutex to read and change the access control
            ' security. The access control security defined above
            ' allows the current user to do this.
            '
            Try
                m = Mutex.OpenExisting(mutexName, _
                    MutexRights.ReadPermissions Or _
                    MutexRights.ChangePermissions)

                ' Get the current ACL. This requires 
                ' MutexRights.ReadPermissions.
                Dim mSec As MutexSecurity = m.GetAccessControl()
                
                Dim user As String = Environment.UserDomainName _ 
                    & "\" & Environment.UserName

                ' First, the rule that denied the current user 
                ' the right to enter and release the mutex must
                ' be removed.
                Dim rule As New MutexAccessRule(user, _
                    MutexRights.Synchronize Or MutexRights.Modify, _
                    AccessControlType.Deny)
                mSec.RemoveAccessRule(rule)

                ' Now grant the user the correct rights.
                ' 
                rule = New MutexAccessRule(user, _
                    MutexRights.Synchronize Or MutexRights.Modify, _
                    AccessControlType.Allow)
                mSec.AddAccessRule(rule)

                ' Update the ACL. This requires
                ' MutexRights.ChangePermissions.
                m.SetAccessControl(mSec)

                Console.WriteLine("Updated mutex security.")

                ' Open the mutex with (MutexRights.Synchronize 
                ' Or MutexRights.Modify), the rights required to
                ' enter and release the mutex.
                '
                m = Mutex.OpenExisting(mutexName)

            Catch ex As UnauthorizedAccessException
                Console.WriteLine("Unable to change permissions: {0}", _
                    ex.Message)
                Return
            End Try

        End If

        ' If this program created the mutex, it already owns
        ' the mutex.
        '
        If Not mutexWasCreated Then
            ' Enter the mutex, and hold it until the program
            ' exits.
            '
            Try
                Console.WriteLine("Wait for the mutex.")
                m.WaitOne()
                Console.WriteLine("Entered the mutex.")
            Catch ex As UnauthorizedAccessException
                Console.WriteLine("Unauthorized access: {0}", _
                    ex.Message)
            End Try
        End If

        Console.WriteLine("Press the Enter key to exit.")
        Console.ReadLine()
        m.ReleaseMutex()
        m.Dispose()
    End Sub 
End Class

Remarks

The name may be prefixed with Global\ or Local\ to specify a namespace. When the Global namespace is specified, the synchronization object may be shared with any processes on the system. When the Local namespace is specified, which is also the default when no namespace is specified, the synchronization object may be shared with processes in the same session. On Windows, a session is a login session, and services typically run in a different non-interactive session. On Unix-like operating systems, each shell has its own session. Session-local synchronization objects may be appropriate for synchronizing between processes with a parent/child relationship where they all run in the same session. For more information about synchronization object names on Windows, see Object Names.

If a name is provided and a synchronization object of the requested type already exists in the namespace, the existing synchronization object is used. If a synchronization object of a different type already exists in the namespace, a WaitHandleCannotBeOpenedException is thrown. Otherwise, a new synchronization object is created.

If name is not null and initiallyOwned is true, the calling thread owns the named mutex only if createdNew is true after the call. Otherwise the thread can request the mutex by calling the WaitOne method.

Use this constructor to apply access control security to a named system mutex when it is created, preventing other code from taking control of the mutex.

This constructor initializes a Mutex object that represents a named system mutex. You can create multiple Mutex objects that represent the same named system mutex.

If the named system mutex does not exist, it is created with the specified access control security. If the named mutex exists, the specified access control security is ignored.

Note

The caller has full control over the newly created Mutex object even if mutexSecurity denies or fails to grant some access rights to the current user. However, if the current user attempts to get another Mutex object to represent the same named mutex, using either a constructor or the OpenExisting method, Windows access control security is applied.

If the named mutex has already been created with access control security, and the caller does not have MutexRights.FullControl, an exception is thrown. To open an existing named mutex with only those permissions needed for synchronizing thread activities, see the OpenExisting method.

If you specify null or an empty string for name, a local mutex is created, as if you had called the Mutex(Boolean) constructor. In this case, createdNew is always true.

Because they are system-wide, named mutexes can be used to coordinate resource use across process boundaries.

Note

On a server that is running Terminal Services, a named system mutex can have two levels of visibility. If its name begins with the prefix Global\, the mutex is visible in all terminal server sessions. If its name begins with the prefix Local\, the mutex is visible only in the terminal server session where it was created. In that case, a separate mutex with the same name can exist in each of the other terminal server sessions on the server. If you do not specify a prefix when you create a named mutex, it takes the prefix Local\. Within a terminal server session, two mutexes whose names differ only by their prefixes are separate mutexes, and both are visible to all processes in the terminal server session. That is, the prefix names Global\ and Local\ describe the scope of the mutex name relative to terminal server sessions, not relative to processes.

Caution

By default, a named mutex is not restricted to the user that created it. Other users may be able to open and use the mutex, including interfering with the mutex by entering the mutex and not exiting it. To restrict access to specific users, you can pass in a MutexSecurity when creating the named mutex. Avoid using named mutexes without access restrictions on systems that might have untrusted users running code.

The backslash (\) is a reserved character in a mutex name. Don't use a backslash (\) in a mutex name except as specified in the note on using mutexes in terminal server sessions. Otherwise, a DirectoryNotFoundException may be thrown, even though the name of the mutex represents an existing file.

Applies to