Muokkaa

Jaa


SafeHandle Class

Definition

Represents a wrapper class for operating system handles. This class must be inherited.

public ref class SafeHandle abstract : IDisposable
public ref class SafeHandle abstract : System::Runtime::ConstrainedExecution::CriticalFinalizerObject, IDisposable
[System.Security.SecurityCritical]
public abstract class SafeHandle : IDisposable
public abstract class SafeHandle : System.Runtime.ConstrainedExecution.CriticalFinalizerObject, IDisposable
[System.Security.SecurityCritical]
public abstract class SafeHandle : System.Runtime.ConstrainedExecution.CriticalFinalizerObject, IDisposable
[<System.Security.SecurityCritical>]
type SafeHandle = class
    interface IDisposable
type SafeHandle = class
    inherit CriticalFinalizerObject
    interface IDisposable
[<System.Security.SecurityCritical>]
type SafeHandle = class
    inherit CriticalFinalizerObject
    interface IDisposable
Public MustInherit Class SafeHandle
Implements IDisposable
Public MustInherit Class SafeHandle
Inherits CriticalFinalizerObject
Implements IDisposable
Inheritance
SafeHandle
Inheritance
Derived
Attributes
Implements

Examples

The following code example creates a custom safe handle for an operating system file handle, deriving from SafeHandleZeroOrMinusOneIsInvalid. It reads bytes from a file and displays their hexadecimal values. It also contains a fault testing harness that causes the thread to abort, but the handle value is freed. When using an IntPtr to represent handles, the handle is occasionally leaked due to the asynchronous thread abort.

You will need a text file in the same folder as the compiled application. Assuming that you name the application "HexViewer", the command line usage is:

HexViewer <filename> -Fault

Optionally specify -Fault to intentionally attempt to leak the handle by aborting the thread in a certain window. Use the Windows Perfmon.exe tool to monitor handle counts while injecting faults.

using System;
using System.Runtime.InteropServices;
using System.IO;
using System.ComponentModel;
using System.Security;
using System.Threading;
using Microsoft.Win32.SafeHandles;
using System.Runtime.ConstrainedExecution;
using System.Security.Permissions;

namespace SafeHandleDemo
{
    internal class MySafeFileHandle : SafeHandleZeroOrMinusOneIsInvalid
    {
        // Create a SafeHandle, informing the base class
        // that this SafeHandle instance "owns" the handle,
        // and therefore SafeHandle should call
        // our ReleaseHandle method when the SafeHandle
        // is no longer in use.
        private MySafeFileHandle()
            : base(true)
        {
        }
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        override protected bool ReleaseHandle()
        {
            // Here, we must obey all rules for constrained execution regions.
            return NativeMethods.CloseHandle(handle);
            // If ReleaseHandle failed, it can be reported via the
            // "releaseHandleFailed" managed debugging assistant (MDA).  This
            // MDA is disabled by default, but can be enabled in a debugger
            // or during testing to diagnose handle corruption problems.
            // We do not throw an exception because most code could not recover
            // from the problem.
        }
    }

    [SuppressUnmanagedCodeSecurity()]
    internal static class NativeMethods
    {
        // Win32 constants for accessing files.
        internal const int GENERIC_READ = unchecked((int)0x80000000);

        // Allocate a file object in the kernel, then return a handle to it.
        [DllImport("kernel32", SetLastError = true, CharSet = CharSet.Unicode)]
        internal extern static MySafeFileHandle CreateFile(String fileName,
           int dwDesiredAccess, System.IO.FileShare dwShareMode,
           IntPtr securityAttrs_MustBeZero, System.IO.FileMode dwCreationDisposition,
           int dwFlagsAndAttributes, IntPtr hTemplateFile_MustBeZero);

        // Use the file handle.
        [DllImport("kernel32", SetLastError = true)]
        internal extern static int ReadFile(MySafeFileHandle handle, byte[] bytes,
           int numBytesToRead, out int numBytesRead, IntPtr overlapped_MustBeZero);

        // Free the kernel's file object (close the file).
        [DllImport("kernel32", SetLastError = true)]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        internal extern static bool CloseHandle(IntPtr handle);
    }

    // The MyFileReader class is a sample class that accesses an operating system
    // resource and implements IDisposable. This is useful to show the types of
    // transformation required to make your resource wrapping classes
    // more resilient. Note the Dispose and Finalize implementations.
    // Consider this a simulation of System.IO.FileStream.
    public class MyFileReader : IDisposable
    {
        // _handle is set to null to indicate disposal of this instance.
        private MySafeFileHandle _handle;

        public MyFileReader(String fileName)
        {
            // Security permission check.
            String fullPath = Path.GetFullPath(fileName);
            new FileIOPermission(FileIOPermissionAccess.Read, fullPath).Demand();

            // Open a file, and save its handle in _handle.
            // Note that the most optimized code turns into two processor
            // instructions: 1) a call, and 2) moving the return value into
            // the _handle field.  With SafeHandle, the CLR's platform invoke
            // marshaling layer will store the handle into the SafeHandle
            // object in an atomic fashion. There is still the problem
            // that the SafeHandle object may not be stored in _handle, but
            // the real operating system handle value has been safely stored
            // in a critical finalizable object, ensuring against leaking
            // the handle even if there is an asynchronous exception.

            MySafeFileHandle tmpHandle;
            tmpHandle = NativeMethods.CreateFile(fileName, NativeMethods.GENERIC_READ,
                FileShare.Read, IntPtr.Zero, FileMode.Open, 0, IntPtr.Zero);

            // An async exception here will cause us to run our finalizer with
            // a null _handle, but MySafeFileHandle's ReleaseHandle code will
            // be invoked to free the handle.

            // This call to Sleep, run from the fault injection code in Main,
            // will help trigger a race. But it will not cause a handle leak
            // because the handle is already stored in a SafeHandle instance.
            // Critical finalization then guarantees that freeing the handle,
            // even during an unexpected AppDomain unload.
            Thread.Sleep(500);
            _handle = tmpHandle;  // Makes _handle point to a critical finalizable object.

            // Determine if file is opened successfully.
            if (_handle.IsInvalid)
                throw new Win32Exception(Marshal.GetLastWin32Error(), fileName);
        }

        public void Dispose()  // Follow the Dispose pattern - public nonvirtual.
        {
            Dispose(disposing: true);
            GC.SuppressFinalize(this);
        }

        // No finalizer is needed. The finalizer on SafeHandle
        // will clean up the MySafeFileHandle instance,
        // if it hasn't already been disposed.
        // However, there may be a need for a subclass to
        // introduce a finalizer, so Dispose is properly implemented here.
        protected virtual void Dispose(bool disposing)
        {
            // Note there are three interesting states here:
            // 1) CreateFile failed, _handle contains an invalid handle
            // 2) We called Dispose already, _handle is closed.
            // 3) _handle is null, due to an async exception before
            //    calling CreateFile. Note that the finalizer runs
            //    if the constructor fails.
            if (_handle != null && !_handle.IsInvalid)
            {
                // Free the handle
                _handle.Dispose();
            }
            // SafeHandle records the fact that we've called Dispose.
        }

        public byte[] ReadContents(int length)
        {
            if (_handle.IsInvalid)  // Is the handle disposed?
                throw new ObjectDisposedException("FileReader is closed");

            // This sample code will not work for all files.
            byte[] bytes = new byte[length];
            int numRead = 0;
            int r = NativeMethods.ReadFile(_handle, bytes, length, out numRead, IntPtr.Zero);
            // Since we removed MyFileReader's finalizer, we no longer need to
            // call GC.KeepAlive here.  Platform invoke will keep the SafeHandle
            // instance alive for the duration of the call.
            if (r == 0)
                throw new Win32Exception(Marshal.GetLastWin32Error());
            if (numRead < length)
            {
                byte[] newBytes = new byte[numRead];
                Array.Copy(bytes, newBytes, numRead);
                bytes = newBytes;
            }
            return bytes;
        }
    }

    static class Program
    {
        // Testing harness that injects faults.
        private static bool _printToConsole = false;
        private static bool _workerStarted = false;

        private static void Usage()
        {
            Console.WriteLine("Usage:");
            // Assumes that application is named HexViewer"
            Console.WriteLine("HexViewer <fileName> [-fault]");
            Console.WriteLine(" -fault Runs hex viewer repeatedly, injecting faults.");
        }

        private static void ViewInHex(Object fileName)
        {
            _workerStarted = true;
            byte[] bytes;
            using (MyFileReader reader = new MyFileReader((String)fileName))
            {
                bytes = reader.ReadContents(20);
            }  // Using block calls Dispose() for us here.

            if (_printToConsole)
            {
                // Print up to 20 bytes.
                int printNBytes = Math.Min(20, bytes.Length);
                Console.WriteLine("First {0} bytes of {1} in hex", printNBytes, fileName);
                for (int i = 0; i < printNBytes; i++)
                    Console.Write("{0:x} ", bytes[i]);
                Console.WriteLine();
            }
        }

        static void Main(string[] args)
        {
            if (args.Length == 0 || args.Length > 2 ||
                args[0] == "-?" || args[0] == "/?")
            {
                Usage();
                return;
            }

            String fileName = args[0];
            bool injectFaultMode = args.Length > 1;
            if (!injectFaultMode)
            {
                _printToConsole = true;
                ViewInHex(fileName);
            }
            else
            {
                Console.WriteLine("Injecting faults - watch handle count in perfmon (press Ctrl-C when done)");
                int numIterations = 0;
                while (true)
                {
                    _workerStarted = false;
                    Thread t = new Thread(new ParameterizedThreadStart(ViewInHex));
                    t.Start(fileName);
                    Thread.Sleep(1);
                    while (!_workerStarted)
                    {
                        Thread.Sleep(0);
                    }
                    t.Abort();  // Normal applications should not do this.
                    numIterations++;
                    if (numIterations % 10 == 0)
                        GC.Collect();
                    if (numIterations % 10000 == 0)
                        Console.WriteLine(numIterations);
                }
            }
        }
    }
}

Remarks

For more information about this API, see Supplemental API remarks for SafeHandle.

Notes to Implementers

To create a class derived from SafeHandle, you must know how to create and free an operating system handle. This process is different for different handle types because some use the CloseHandle function, while others use more specific functions such as UnmapViewOfFile or FindClose. For this reason, you must create a derived class of SafeHandle for each operating system handle type that you want to wrap in a safe handle.

When you inherit from SafeHandle, you must override the following members: IsInvalid and ReleaseHandle().

You should also provide a public parameterless constructor that calls the base constructor with a value that represents an invalid handle value, and a Boolean value indicating whether the native handle is owned by the SafeHandle and consequently should be freed when that SafeHandle has been disposed.

Constructors

SafeHandle(IntPtr, Boolean)

Initializes a new instance of the SafeHandle class with the specified invalid handle value.

Fields

handle

Specifies the handle to be wrapped.

Properties

IsClosed

Gets a value indicating whether the handle is closed.

IsInvalid

When overridden in a derived class, gets a value indicating whether the handle value is invalid.

Methods

Close()

Marks the handle for releasing and freeing resources.

DangerousAddRef(Boolean)

Manually increments the reference counter on SafeHandle instances.

DangerousGetHandle()

Returns the value of the handle field.

DangerousRelease()

Manually decrements the reference counter on a SafeHandle instance.

Dispose()

Releases all resources used by the SafeHandle class.

Dispose(Boolean)

Releases the unmanaged resources used by the SafeHandle class specifying whether to perform a normal dispose operation.

Equals(Object)

Determines whether the specified object is equal to the current object.

(Inherited from Object)
Finalize()

Frees all resources associated with the handle.

GetHashCode()

Serves as the default hash function.

(Inherited from Object)
GetType()

Gets the Type of the current instance.

(Inherited from Object)
MemberwiseClone()

Creates a shallow copy of the current Object.

(Inherited from Object)
ReleaseHandle()

When overridden in a derived class, executes the code required to free the handle.

SetHandle(IntPtr)

Sets the handle to the specified pre-existing handle.

SetHandleAsInvalid()

Marks a handle as no longer used.

ToString()

Returns a string that represents the current object.

(Inherited from Object)

Applies to

See also