Muokkaa

Jaa


ProcessStartInfo.RedirectStandardOutput Property

Definition

Gets or sets a value that indicates whether the textual output of an application is written to the StandardOutput stream.

public:
 property bool RedirectStandardOutput { bool get(); void set(bool value); };
public bool RedirectStandardOutput { get; set; }
member this.RedirectStandardOutput : bool with get, set
Public Property RedirectStandardOutput As Boolean

Property Value

true if output should be written to StandardOutput; otherwise, false. The default is false.

Examples

// Run "cl.exe /cld stdstr.cpp /link /out:sample.exe". UseShellExecute is false because we're specifying
// an executable directly and in this case depending on it being in a PATH folder. By setting
// RedirectStandardOutput to true, the output of cl.exe is directed to the Process.StandardOutput stream
// which is then displayed in this console window directly.    
Process^ compiler = gcnew Process;
compiler->StartInfo->FileName = "cl.exe";
compiler->StartInfo->Arguments = "/clr stdstr.cpp /link /out:sample.exe";
compiler->StartInfo->UseShellExecute = false;
compiler->StartInfo->RedirectStandardOutput = true;
compiler->Start();

Console::WriteLine( compiler->StandardOutput->ReadToEnd() );

compiler->WaitForExit();
// Run "csc.exe /r:System.dll /out:sample.exe stdstr.cs". UseShellExecute is false because we're specifying
// an executable directly and in this case depending on it being in a PATH folder. By setting
// RedirectStandardOutput to true, the output of csc.exe is directed to the Process.StandardOutput stream
// which is then displayed in this console window directly.
using (Process compiler = new Process())
{
    compiler.StartInfo.FileName = "csc.exe";
    compiler.StartInfo.Arguments = "/r:System.dll /out:sample.exe stdstr.cs";
    compiler.StartInfo.UseShellExecute = false;
    compiler.StartInfo.RedirectStandardOutput = true;
    compiler.Start();

    Console.WriteLine(compiler.StandardOutput.ReadToEnd());

    compiler.WaitForExit();
}
' Run "vbc.exe /reference:Microsoft.VisualBasic.dll /out:sample.exe stdstr.vb". UseShellExecute is False 
' because we're specifying an executable directly and in this case depending on it being in a PATH folder. 
' By setting RedirectStandardOutput to True, the output of csc.exe is directed to the Process.StandardOutput 
' stream which is then displayed in this console window directly.    
Using compiler As New Process()
    compiler.StartInfo.FileName = "vbc.exe"
    compiler.StartInfo.Arguments = "/reference:Microsoft.VisualBasic.dll /out:sample.exe stdstr.vb"
    compiler.StartInfo.UseShellExecute = False
    compiler.StartInfo.RedirectStandardOutput = True
    compiler.Start()

    Console.WriteLine(compiler.StandardOutput.ReadToEnd())

    compiler.WaitForExit()
End Using

Remarks

When a Process writes text to its standard stream, that text is typically displayed on the console. By setting RedirectStandardOutput to true to redirect the StandardOutput stream, you can manipulate or suppress the output of a process. For example, you can filter the text, format it differently, or write the output to both the console and a designated log file.

Note

You must set UseShellExecute to false if you want to set RedirectStandardOutput to true. Otherwise, reading from the StandardOutput stream throws an exception.

The redirected StandardOutput stream can be read synchronously or asynchronously. Methods such as Read, ReadLine, and ReadToEnd perform synchronous read operations on the output stream of the process. These synchronous read operations do not complete until the associated Process writes to its StandardOutput stream, or closes the stream.

In contrast, BeginOutputReadLine starts asynchronous read operations on the StandardOutput stream. This method enables a designated event handler (see OutputDataReceived) for the stream output and immediately returns to the caller, which can perform other work while the stream output is directed to the event handler.

Note

The application that is processing the asynchronous output should call the WaitForExit method to ensure that the output buffer has been flushed.

Synchronous read operations introduce a dependency between the caller reading from the StandardOutput stream and the child process writing to that stream. These dependencies can cause deadlock conditions. When the caller reads from the redirected stream of a child process, it is dependent on the child. The caller waits for the read operation until the child writes to the stream or closes the stream. When the child process writes enough data to fill its redirected stream, it is dependent on the parent. The child process waits for the next write operation until the parent reads from the full stream or closes the stream. The deadlock condition results when the caller and child process wait for each other to complete an operation, and neither can continue. You can avoid deadlocks by evaluating dependencies between the caller and child process.

The last two examples in this section use the Start method to launch an executable named Write500Lines.exe. The following example contains its source code.

using System;
using System.IO;

public class Example3
{
   public static void Main()
   {
      for (int ctr = 0; ctr < 500; ctr++)
         Console.WriteLine($"Line {ctr + 1} of 500 written: {ctr + 1/500.0:P2}");

      Console.Error.WriteLine("\nSuccessfully wrote 500 lines.\n");
   }
}
// The example displays the following output:
//      The last 50 characters in the output stream are:
//      ' 49,800.20%
//      Line 500 of 500 written: 49,900.20%
//'
//
//      Error stream: Successfully wrote 500 lines.
Imports System.IO

Public Module Example
   Public Sub Main()
      For ctr As Integer = 0 To 499
         Console.WriteLine($"Line {ctr + 1} of 500 written: {ctr + 1/500.0:P2}")
      Next

      Console.Error.WriteLine($"{vbCrLf}Successfully wrote 500 lines.{vbCrLf}")
   End Sub
End Module
' The example displays the following output:
'      The last 50 characters in the output stream are:
'      ' 49,800.20%
'      Line 500 of 500 written: 49,900.20%
'
'
'      Error stream: Successfully wrote 500 lines.

The following example shows how to read from a redirected stream and wait for the child process to exit. The example avoids a deadlock condition by calling p.StandardOutput.ReadToEnd before p.WaitForExit. A deadlock condition can result if the parent process calls p.WaitForExit before p.StandardOutput.ReadToEnd and the child process writes enough text to fill the redirected stream. The parent process would wait indefinitely for the child process to exit. The child process would wait indefinitely for the parent to read from the full StandardOutput stream.

using System;
using System.Diagnostics;

public class Example2
{
   public static void Main()
   {
      var p = new Process();  
      p.StartInfo.UseShellExecute = false;  
      p.StartInfo.RedirectStandardOutput = true;  
      p.StartInfo.FileName = "Write500Lines.exe";  
      p.Start();  

      // To avoid deadlocks, always read the output stream first and then wait.  
      string output = p.StandardOutput.ReadToEnd();  
      p.WaitForExit();

      Console.WriteLine($"The last 50 characters in the output stream are:\n'{output.Substring(output.Length - 50)}'");
   }
}
// The example displays the following output:
//      Successfully wrote 500 lines.
//
//      The last 50 characters in the output stream are:
//      ' 49,800.20%
//      Line 500 of 500 written: 49,900.20%
//      '
Imports System.Diagnostics'

Public Module Example
   Public Sub Main()
      Dim p As New Process()
      p.StartInfo.UseShellExecute = False  
      p.StartInfo.RedirectStandardOutput = True  
      p.StartInfo.FileName = "Write500Lines.exe"  
      p.Start() 

      ' To avoid deadlocks, always read the output stream first and then wait.  
      Dim output As String = p.StandardOutput.ReadToEnd()  
      p.WaitForExit()

      Console.WriteLine($"The last 50 characters in the output stream are:\n'{output.Substring(output.Length - 50)}'")
   End Sub
End Module
' The example displays the following output:
'      Successfully wrote 500 lines.
'
'      The last 50 characters in the output stream are:
'      ' 49,800.20%
'      Line 500 of 500 written: 49,900.20%
'      '

There is a similar issue when you read all text from both the standard output and standard error streams. The following example performs a read operation on both streams. It avoids the deadlock condition by performing asynchronous read operations on the StandardError stream. A deadlock condition results if the parent process calls p.StandardOutput.ReadToEnd followed by p.StandardError.ReadToEnd and the child process writes enough text to fill its error stream. The parent process would wait indefinitely for the child process to close its StandardOutput stream. The child process would wait indefinitely for the parent to read from the full StandardError stream.

using System;
using System.Diagnostics;

public class Example
{
   public static void Main()
   {
      var p = new Process();  
      p.StartInfo.UseShellExecute = false;  
      p.StartInfo.RedirectStandardOutput = true;  
      string eOut = null;
      p.StartInfo.RedirectStandardError = true;
      p.ErrorDataReceived += new DataReceivedEventHandler((sender, e) => 
                                 { eOut += e.Data; });
      p.StartInfo.FileName = "Write500Lines.exe";  
      p.Start();  

      // To avoid deadlocks, use an asynchronous read operation on at least one of the streams.  
      p.BeginErrorReadLine();
      string output = p.StandardOutput.ReadToEnd();  
      p.WaitForExit();

      Console.WriteLine($"The last 50 characters in the output stream are:\n'{output.Substring(output.Length - 50)}'");
      Console.WriteLine($"\nError stream: {eOut}");
   }
}
// The example displays the following output:
//      The last 50 characters in the output stream are:
//      ' 49,800.20%
//      Line 500 of 500 written: 49,900.20%
//      '
//
//      Error stream: Successfully wrote 500 lines.
Imports System.Diagnostics

Public Module Example
   Public Sub Main()
      Dim p As New Process()  
      p.StartInfo.UseShellExecute = False  
      p.StartInfo.RedirectStandardOutput = True  
      Dim eOut As String = Nothing
      p.StartInfo.RedirectStandardError = True
      AddHandler p.ErrorDataReceived, Sub(sender, e) eOut += e.Data 
      p.StartInfo.FileName = "Write500Lines.exe"  
      p.Start()  

      ' To avoid deadlocks, use an asynchronous read operation on at least one of the streams.  
      p.BeginErrorReadLine()
      Dim output As String = p.StandardOutput.ReadToEnd()  
      p.WaitForExit()

      Console.WriteLine($"The last 50 characters in the output stream are:{vbCrLf}'{output.Substring(output.Length - 50)}'")
      Console.WriteLine($"{vbCrLf}Error stream: {eOut}")
   End Sub
End Module
' The example displays the following output:
'      The last 50 characters in the output stream are:
'      ' 49,800.20%
'      Line 500 of 500 written: 49,900.20%
'      '
'
'      Error stream: Successfully wrote 500 lines.

You can use asynchronous read operations to avoid these dependencies and their deadlock potential. Alternately, you can avoid the deadlock condition by creating two threads and reading the output of each stream on a separate thread.

Applies to

See also