Compartir a través de


Preparación de una carga de archivos de datos de la organización

La aplicación de información avanzada puede obtener datos de la organización de dos maneras: a través de Microsoft Entra ID, que es la configuración predeterminada, o a través de un archivo de datos de la organización que se carga como administrador. En este artículo, se describe la segunda opción, el archivo de datos de la organización. Siga leyendo para averiguar lo que debe hacer como administrador para identificar, recopilar y estructurar los datos antes de cargar los datos de la organización.

Para obtener información sobre los datos de la organización en general, averigüe qué datos Microsoft Entra ID se sincronizan automáticamente con Viva Insights y para obtener información general de la página Datos de la organización en la experiencia de administrador de información avanzada, consulte Datos de la organización en Viva Insights.

Importante

Después de cargar un archivo de .csv con datos de la organización, no podrá volver a usar Microsoft Entra ID. Tendrá que cargar periódicamente .csv archivos para mantener los datos de la organización actualizados.

Preparar los datos de la organización

Cuando quiera empezar a trabajar con un archivo de datos de la organización, las secciones siguientes le guiarán a través del proceso de preparación de datos:

  1. Identificar las tendencias que desea analizar : decida qué tendencias necesita obtener información sobre para mejorar la eficiencia en el trabajo. Una vez que identifique esas tendencias, podrá elegir mejor qué datos de la organización usar.
  2. Saber qué datos incluir : se requieren algunos atributos de datos y muchos son opcionales. Entre los opcionales, elija los atributos que mejor se adapten a sus fines analíticos.
  3. Obtener una exportación de datos de la organización : haga que un administrador exporte los datos de RR. HH. del sistema de RR. HH. de la organización. Opcionalmente, incluya datos de línea de negocio, si el análisis lo requiere.
  4. Estructurar los datos de la organización : para que los datos se validen correctamente, primero debe estructurarlo correctamente en el archivo .csv que cargue.
  5. Cargar el archivo de datos de la organización : una vez que el archivo de .csv esté listo, cárguelo en la aplicación de conclusiones avanzadas, donde, después de la validación y el procesamiento, estará disponible para su análisis.

Para saber qué datos de la organización extraer, primero debe decidir las tendencias del área de trabajo de las que desea obtener información. Por ejemplo, en un análisis próximo, es posible que deba examinar la colaboración entre diferentes segmentos de empleados o grupos. Primero debe definir estos grupos, lo que puede hacer de varias maneras:

  • Por datos de la organización
  • Por niveles de jerarquía organizativa
  • Por rendimiento, interacción u otros datos de línea de negocio

Los grupos definidos se pueden usar en los siguientes ejemplos de análisis:

Colaboración entre grupos

Un escenario de análisis común es encontrar patrones de colaboración entre diferentes grupos de empleados. Por ejemplo, es posible que quiera saber cuánto está hablando su equipo de marketing de productos con su equipo de ventas.

Los atributos para segmentar las poblaciones pueden ser útiles a la hora de definir patrones de colaboración, como:

  • Atributos de familia o rol de trabajo, como profesión, función, disciplina y código de trabajo
  • Organización, línea de negocio o centro de costos, como RR. HH., Finanzas, Ventas y Marketing
  • Atributos de ubicación, como ciudad, estado, país y regiones, según lo definido por su organización
  • Atributos que describen su trabajo, como empleado remoto, a tiempo completo o proveedor

La mayoría de estos atributos están disponibles en los sistemas de información de RR. HH.

Colaboración jerárquica

También es habitual buscar patrones de comportamiento de colaboración en referencia a la jerarquía de la organización. También puede cuantificar la colaboración entre administradores y colaboradores individuales, y entre niveles superiores e inferiores de la organización.

Los siguientes conceptos son útiles en este tipo de análisis:

  • IC o administrador : si un empleado es un colaborador individual o un administrador.
  • Jerarquía organizativa : por ejemplo, los nombres de todos los administradores por encima del empleado en la estructura de informes de ese empleado; cada administrador se puede almacenar como un atributo independiente.
  • Capa : por ejemplo, la posición del empleado en la jerarquía organizativa donde la capa 0 = el líder superior de la empresa.
  • Span : por ejemplo, el número de informes directos asignados a un empleado.
  • Nivel – Por ejemplo, gerente sénior, VP, director, CVP.

La mayoría de estos atributos también se encuentran en sistemas de información de RR. HH.

Datos de colaboración, compromiso y resultados

Por último, es posible que quiera considerar la posibilidad de asignar patrones de comportamiento de colaboración a las puntuaciones de compromiso de los empleados u otros datos de resultados de rendimiento. Estos datos pueden incluir el logro de la cuota de ventas o las clasificaciones de rendimiento. Estos datos se encuentran a menudo fuera de los sistemas de información de RR. HH. tradicionales, ya sea en repositorios de datos de RR. HH. independientes o en sistemas de línea de negocio.

Paso 2: Saber qué datos incluir

Para obtener toda la funcionalidad de la aplicación Advanced Insights, debe proporcionar varios atributos necesarios, como se describe en Referencia de atributos. Además, puede proporcionar hasta 100 atributos opcionales para agrupar y filtrar los datos de maneras interesantes y personalizadas.

Algunos ejemplos de datos de la organización son la familia de trabajos, el rol de trabajo, la organización y la línea de negocio. Estos datos se proporcionan a la aplicación de información avanzada en el nivel individual, lo que significa que estos atributos proporcionan contexto a cada persona del conjunto de datos.

Empleados que se van a incluir

Como mínimo, incluya los datos de la organización para todos los empleados que tengan licencias de Viva Insights. Es incluso mejor incluir a todas las personas de la empresa como parte de la carga de datos, incluso si planea recopilar datos de colaboración solo para un subgrupo, es decir, una población de destino específica dentro de la empresa.

Por ejemplo, si los usuarios de Marketing se comunican con frecuencia con los usuarios de Desarrollo de productos, pero la aplicación solo tiene datos de RR. HH. sobre la organización marketing, no puede crear informes para mostrar cuánto tiempo dedica Marketing al desarrollo de productos.

Si no puede incluir a todas las personas de su organización, el mínimo que se debe incluir es todas las personas para las que se están recopilando datos de colaboración. Este mínimo permite analizar patrones de colaboración entre grupos dentro de esta población, pero no entre grupos fuera de esta población.

Incluir a todos los empleados con licencia

Es responsabilidad del administrador mantener los datos de la organización actualizados y completos. En esta tarea, "complete" significa dos cosas: datos que incluyen las personas adecuadas e incluyen los atributos adecuados para esas personas.

La razón para incluir a todos los empleados con licencia de la organización es que, si faltan datos de la organización, los analistas no pueden filtrar por esos datos cuando crean una consulta en la página Análisis . Por lo tanto, los empleados cuyos datos faltan se excluyen de los análisis que realizan los analistas.

Importante

Asegúrese de que el administrador de Microsoft 365 ha asignado licencias a todos los empleados que quiera incluir en los informes. Incluso si incluye un empleado en el archivo de datos de la organización, necesitará una licencia para aparecer en los informes. Para obtener más información sobre las licencias y los informes, consulte Cuando los usuarios aparecen en los resultados de la consulta.

Notificación de datos que faltan

Si la aplicación detecta que faltan datos para uno o varios empleados con licencia, alerta a los administradores a través de una notificación emergente en la esquina superior derecha de la pestaña Conexiones de datos .

Carga de datos de la organización que faltan

Para cargar estos datos que faltan, el administrador puede seguir estos pasos:

  1. En la notificación emergente, seleccione Descargar para descargar un archivo .csv que contenga los nombres de los empleados con licencia cuyos datos organizativos faltan.
  2. Abra el archivo .csv.
  3. Anexe los datos que faltan para estos empleados. Esto significa agregar atributos (columnas) que describen a los empleados de forma coherente con las cargas anteriores.
  4. Cargue el archivo. Consulte Carga de datos de la organización (carga posterior) para obtener más información.

Además de incluir a todos los empleados con licencia en la carga de datos de la organización, se recomienda incluir también empleados sin licencia, como se explicó anteriormente.

Paso 3: Obtener una exportación de datos de la organización

Antes de dar formato a los datos de la organización y cargarlos, debe obtenerlos de uno o varios orígenes. El origen principal es el equipo que gestiona los sistemas de información de RR. HH. de la organización. Este equipo debe proporcionarle una exportación de datos de atributos de RR. HH. para empleados individuales.

Además, es posible que los analistas necesiten datos sobre los resultados empresariales. Si es así, debe ponerse en contacto con los propietarios de línea de negocio que tengan acceso a almacenes de datos que contengan esta información. Por ejemplo, estos datos pueden incluir:

  • Datos de revisión del rendimiento para grupos de trabajo específicos.
  • Puntuaciones de compromiso de los empleados capturadas por RR. HH. fuera de los sistemas de información de RR. HH.
  • Ventas u otros datos de logro de cuota que proporcionan más vistas en el rendimiento.
  • Datos de encuesta de empleados.

Después de obtener estos datos, deberá estructurarlo para que se procesen correctamente después de cargarlos en la aplicación.

Paso 4: Estructurar los datos de la organización

Después de obtener los datos exportados, estructure los datos en el formato correcto.

Adición de atributos obligatorios, reservados opcionales y personalizados

Hay tres tipos de atributos que puede agregar en el archivo de datos de la organización: obligatorio, opcional reservado y personalizado.

Obligatorio

Proporcione los atributos siguientes como encabezados de columna, exactamente como se escribe a continuación, en la carga de .csv.

  • EffectiveDate
    • Asegúrese de que la columna EffectiveDate tiene valores en todas las filas. Si no proporciona una columna EffectiveDate en la carga, la fecha en que cargó los datos se convierte en el valor predeterminado EffectiveDate.
  • PersonId
  • ManagerId
  • Organización (distingue mayúsculas de minúsculas)
Opcional reservado

Los siguientes atributos son encabezados de columna reservados para los atributos que se usan actualmente para calcular, filtrar y agrupar datos. Es posible que se necesiten distintos atributos de la lista siguiente en función de la plantilla de Power BI determinada.

  • LevelDesignation
  • FunctionType
  • HireDate
  • HourlyRate
  • Layer
  • SupervisorIndicator
  • WeeklyBadgeOnsiteDays
  • Ubicación

Nota:

Los atributos pueden estar en cualquier orden en el archivo. Sin embargo, los nombres de estos atributos obligatorios y reservados no se pueden usar como nombres de los nuevos atributos personalizados.

Atributos personalizados

Los atributos personalizados son cualquier otro atributo que quiera definir para usar en el filtrado y agrupación de datos. Al cargar estos atributos, los analistas pueden usarlos al compilar consultas. Para obtener información sobre cómo cargar atributos personalizados, consulte Carga de datos de la organización (primera carga).

Nota:

  • El número máximo de atributos totales permitidos en el sistema es 105, que incluye los cinco atributos necesarios.
  • Todos los campos numéricos (como el atributo necesario "HourlyRate") deben estar en el formato "number" y no pueden contener comas ni un signo de dólar.

Sugerencia

Vaya a nuestro artículo Reglas de archivo y errores de validación para obtener más información sobre cómo aplicar formato al archivo.

Ejemplo .csv archivo de exportación

Este es un fragmento de código de ejemplo de un archivo de exportación de .csv válido:

PersonId,EffectiveDate,HireDate,ManagerId,LevelDesignation,Organization,Layer,Area Emp1@contoso.com,12/1/2020,1/3/2014,Mgr1@contoso.com,Junior IC,Sales,8,Southeast Emp2@contoso.com,11/1/2020,1/3/2014,Mgr1@contoso.com,Junior IC,Sales,8,Southeast Emp3@contoso.com,12/1/2020,1/3/2014,Mgr2@contoso.com,Manager,Sales,7,Northeast Emp4@contoso.com,10/1/2020,8/15/2015,Mgr3@contoso.com,Support,Sales,9,Midwest Emp5@contoso.com,11/1/2020,8/15/2015,Mgr3@contoso.com,Support,Sales,9,Midwest Emp6@contoso.com,12/1/2020,8/15/2015,Mgr3@contoso.com,Support,Sales,9,Midwest

Para obtener más información sobre los atributos, consulte la sección Referencia de atributos .

Paso 5: Carga del archivo de datos de la organización

Después de crear un archivo de .csv de origen, puede cargarlo en la aplicación de información avanzada a través de la página > Datos de la organización Centro de datos o la pestaña Conexiones de datos .

Si es la primera vez que carga datos de la organización, consulte Carga de datos organizativos (primera carga). Si no es la primera vez, consulte Carga de datos de la organización (cargas posteriores).

Una vez que los datos se cargan correctamente, la aplicación realiza más validación y procesamiento para completar el aprovisionamiento.

Frecuencia con la que se carga un archivo de .csv de datos de la organización

Se recomienda cargar los datos de los empleados al menos una vez al mes para mantener los datos actualizados y el análisis pertinentes. Poco después de que una carga de datos de empleados se haya realizado correctamente, los datos actualizados estarán disponibles para que los usuarios vean como conclusiones en la aplicación.

Suministro de datos durante un período de tiempo

De forma predeterminada, Viva Insights incluye datos de reunión y correo electrónico para los empleados medidos durante un año. Los datos organizativos se proporcionan para Viva Insights con una fecha de vigencia asociada a cada fila del archivo de carga.

Si realiza una exportación a un momento dado de los datos de la organización desde el sistema de información de RR. HH. a partir de la fecha actual, obtendrá una imagen de la población de empleados para ese único momento en el tiempo. Para obtener la mayor fidelidad de datos durante el aprovisionamiento, debe proporcionar exportaciones de datos de la organización para cada uno de los últimos 13 meses. Estos datos se pueden proporcionar en un único archivo o en una secuencia de archivos.

Este es el aspecto que tendría en la práctica. Para cada empleado medido, tendría 13 filas independientes. Cada una de esas filas contendrá una fecha efectiva para cada mes para el que se extraieron los datos. Si no es posible una fecha efectiva para cada mes, puede proporcionar un único punto en el tiempo. En ese caso, establezca la fecha efectiva en el primer día del mes actual, un año atrás. Por ejemplo, si el aprovisionamiento se produjo en octubre de 2020, la fecha de vigencia de todas las filas debe establecerse en 10/1/2019.

La actividad de colaboración de empleados se asigna a la instantánea de datos de la organización más reciente (basada en EffectiveDate) que precede a la fecha de la actividad de colaboración.

Configuración avanzada: configuración de la dirección de correo electrónico para buscar el id. de acceso correspondiente para el procesamiento

Viva Insights usa direcciones de correo electrónico para buscar el EntraID correspondiente para su procesamiento. Con esta configuración avanzada, puede elegir la fecha que Viva Insights debe usar para obtener el EntraID para cada dirección de correo electrónico.

Opción 1: EffectiveDate

Se aplica si: el origen de datos realiza un seguimiento de los cambios de dirección de correo electrónico por EffectiveDate.

EffectiveDate es la fecha en que se aplica un valor de atributo determinado para un empleado. El atributo se aplica hasta que se especifica otro registro para el mismo atributo con un EffectiveDate diferente. Si no se carga EffectiveDate, la fecha de carga se usa como valor predeterminado.

Escenario

  1. El origen de datos realiza un seguimiento de los cambios de dirección de correo electrónico por EffectiveDate.
  2. La dirección de correo electrónico ha cambiado de BoSmith@contoso.com a BoJames@contoso.com para EntraID "A". Este cambio se registra en el sistema HCM mediante EffectiveDate.

Ejemplo:

  1. 14/04/2024: La dirección de correo electrónico cambió de BoSmith@contoso.com a BoJames@contoso.com para EntraID "A". Este cambio se registra en el sistema de origen HCM con una nueva fila para BoJames@contoso.com con EffectiveDate 04/14/2024.

  2. Se trata de una instantánea exportada desde el sistema de origen HCM el 15/04/2024:

    PersonId EffectiveDate Organización
    BoSmith@contoso.com 04/01/2024 ABECEDARIO
    BoJames@contoso.com 04/14/2024 ABECEDARIO
  3. 16/04/2024: El archivo exportado en la fecha de instantánea se carga en Viva Insights

Opción 2: Seleccionar fecha

Se aplica si: el origen de datos no realiza un seguimiento de los cambios de dirección de correo electrónico. La dirección de correo electrónico de la fecha seleccionada se usa para todas las fechas anteriores.

  1. Seleccione la fecha de hoy si ha exportado datos de ella recientemente.
  2. De lo contrario, seleccione una fecha anterior.

Escenario 1

  1. El origen de datos no realiza un seguimiento de los cambios de dirección de correo electrónico y ha exportado los datos de él recientemente.
  2. La dirección de correo electrónico cambió para EntraID "A" y quiere que la nueva dirección de correo electrónico coincida con "A" para todos los datos históricos.

Ejemplo:

  1. 14/04/2024: La dirección de correo electrónico cambió de BoSmith@contoso.com a BoJames@contoso.com para EntraID "A".

  2. La instantánea exportada desde el sistema de origen HCM el 15/04/2024:

    PersonId EffectiveDate Organización
    BoJames@contoso.com 04/01/2024 ABECEDARIO
  3. 16/04/2024: El archivo exportado en la fecha de instantánea se carga en Viva Insights.

  4. Seleccione 16/04/2024 en la lista desplegable

    • Esto garantiza que la dirección de correo electrónico del 16/04/2024 (por ejemplo, BoJames@contoso.com) se usa para capturar EntraID "A" para todas las fechas pasadas.

Escenario 2

  1. El origen de datos no realiza un seguimiento de los cambios de dirección de correo electrónico y no exportó recientemente ningún dato.
  2. La dirección de correo electrónico cambió para EntraID "A" y quiere que la dirección de correo electrónico anterior coincida con "A" para todos los datos históricos.

Ejemplo:

  1. La instantánea exportada desde el sistema de origen HCM el 20/04/2024:

    PersonId EffectiveDate Organización
    BoSmith@contoso.com 04/01/2024 ABECEDARIO
  2. 25/04/2024: La dirección de correo electrónico cambió de BoSmith@contoso.com a BoJames@contoso.com para EntraID "A".

  3. 10/05/2024: El archivo exportado en la fecha de instantánea se carga en Viva Insights.

    • Seleccione 20/04/2024 en la lista desplegable y no 04/25/2024 o 05/10/2024.
    • Esto garantiza que la dirección de correo electrónico del 20/04/2024 (por ejemplo, BoSmith@constoso.com) se usa para capturar EntraID "A" para todas las fechas pasadas.

Referencia de atributo

Esta sección contiene información sobre los atributos que se usan en los archivos de datos de la organización cargados en la aplicación advanced Insights.

Nota:

Si comparte datos de Viva Insights con la característica Datos organizativos en Microsoft 365, se comparten algunos de los atributos que se enumeran a continuación. Sin embargo, cualquier atributo que contenga Microsoft_ no estará disponible en Viva Insights. Obtenga más información sobre los datos organizativos en Microsoft 365.

Nota:

El campo "OnsiteDays" ahora es "WeeklyBadgeOnsiteDays". Consulte la tabla siguiente para obtener más información.

Viva Insights campo asignado Description Tipo de datos Valor de ejemplo Obligatorio o reservado
PersonId Identificador único de un registro de empleado. Puede ser la dirección SMTP principal del empleado o el alias de correo electrónico. Correo electrónico joe@contoso.com Requerido1
ManagerId Identificador único del administrador de un empleado. Puede ser la dirección SMTP principal del administrador o el alias de correo electrónico. Para los directores generales, esto se puede dejar en blanco. Correo electrónico sally@contoso.com Obligatorio
Organización La organización interna a la que pertenece un empleado. Para obtener información más útil, evite usar demasiadas o demasiadas organizaciones únicas. Cadena Financial Planning and Analysis Obligatorio
EffectiveDate
  • Fecha en que se aplica un valor de atributo determinado para un empleado. El atributo se aplica hasta que se especifica otro registro para el mismo atributo con un EffectiveDate diferente. Si no se carga EffectiveDate, la fecha de carga se usa como valor predeterminado.
  • Administración puede seleccionar DataType como DateTime_MM/DD/AAAA o DateTime_DD/MM/AAAA.
  • Si el tipo de datos seleccionado es DateTime_MM/DD/AAAA, admite MM/DD/AAAA, MM/DD/AAAA seguido de más texto como "time", MM-DD-AAAA, MM-DD-AAAA o AAAA-MM-DD.
  • Si el tipo de datos seleccionado es DateTime_DD/MM/AAAA, admite DD/MM/AAAA, DD/MM/AAAA seguido de más texto como "time", D/MM/AAAA, D/MM/AAAA, D/MM/AAAA, DD-MM-AAAA, DD-MM-AAAA o AAAA-DD-MM.
  • Si el tipo de datos seleccionado es DateTime_MM/DD/AAAA o DateTime_DD/MM/AAAA, admite miércoles, 14 de marzo de 2012; 14 de marzo de 2012; 14-Mar-2012; o 14-Mar-12.
  • DateTime 12/31/2021 Requerido2
    LevelDesignation Nivel que representa la experiencia, el nivel de administración o la antigüedad de un empleado dentro de la organización. Para obtener información más útil, evite usar demasiados valores de LevelDesignation únicos o demasiados. Cadena Director Reservado3
    FunctionType Función de trabajo que realiza un empleado. Para obtener información más útil, evite usar demasiados o demasiados FunctionTypes únicos. Cadena Finance Management Reserved
    HireDate
  • La fecha en que un empleado comenzó a trabajar. Si un empleado tiene varias fechas de contratación, es mejor usar la fecha de contratación más reciente.
  • Administración puede seleccionar DataType como DateTime_MM/DD/AAAA o DateTime_DD/MM/AAAA.
  • Si el tipo de datos seleccionado es DateTime_MM/DD/AAAA, admite MM/DD/AAAA, MM/DD/AAAA seguido de más texto como "time", MM-DD-AAAA, MM-DD-AAAA o AAAA-MM-DD.
  • Si el tipo de datos seleccionado es DateTime_DD/MM/AAAA, admite DD/MM/AAAA, DD/MM/AAAA seguido de más texto como "time", D/MM/AAAA, D/MM/AAAA, D/MM/AAAA, DD-MM-AAAA, DD-MM-AAAA o AAAA-DD-MM.
  • Si el tipo de datos seleccionado es DateTime_MM/DD/AAAA o DateTime_DD/MM/AAAA, admite miércoles, 14 de marzo de 2012; 14 de marzo de 2012; 14-Mar-2012; o 14-Mar-12.
  • DateTime 12/31/2021 Reserved
    HourlyRate El salario de un empleado se representa como una tarifa por hora en dólares estadounidenses. Doble 25.25 Reserved
    Layer Posición de un empleado dentro de la jerarquía organizativa, expresada como su distancia con respecto al líder superior de la organización. Por ejemplo, el CEO está en la capa 0. Para obtener información más útil, evite usar demasiadas capas únicas o demasiadas. Entero 2 Reserved
    SupervisorIndicator El estado de administrador de un empleado como IC (colaborador individual), Mngr (administrador) o Mngr+ (administrador de administradores). Cadena IC Reserved
    WeeklyBadgeOnsiteDays El promedio de días por semana que un empleado trabaja desde el sitio de trabajo principal de la empresa. Debe ser un número entre 0 y 7. WeeklyBadgeOnsiteDays se puede basar en datos de distintivos o en otros orígenes, por ejemplo, etiquetas en el sistema de RR. HH. que muestran el número de días que un empleado planea trabajar in situ. Doble 4 Reserved
    Ubicación Ubicación de la oficina de un empleado. Cadena Burbank Reserved
    CountryOrRegion  País o región en el que trabaja el empleado.  Cadena Japan Reserved
    My_Custom_attribute
    (ejemplo: Campus)
    Atributo que se crea Cadena West N/A (personalizado)4

    1. Debe incluir los campos obligatorios. Cada campo necesario necesita valores no en blanco para cada fila.

    2. Si no incluye una columna EffectiveDate con la carga, la fecha de carga se convierte en el valor predeterminado EffectiveDate.

    3. No es necesario incluir ninguno de estos campos reservados. Sin embargo, si los usa, conserve estos nombres de columna.

    4. No es necesario incluir atributos personalizados. Sin embargo, si los agrega, no pueden tener el mismo nombre que ninguno de los atributos necesarios o reservados.

    Notas y recomendaciones de atributos

    Algunos atributos solo existen para un subconjunto de la población

    Al elegir los atributos que se van a incluir, algunos valores de atributo pueden rellenarse para una organización, pero no para otras. Por ejemplo, si la carga incluye datos de cuota de ventas que solo se aplican a su organización de ventas, no puede usar estos datos para filtrar y agrupar empleados fuera de las ventas.

    Demasiados valores únicos

    A veces, un atributo tiene demasiados valores únicos que usar para la agrupación y el filtrado. Por ejemplo, si una función de trabajo o un código está demasiado definido, es posible que no le proporcione una vista útil del grupo general. Si un atributo tiene cientos de valores únicos que dan lugar a un grupo de población pequeño por valor, es posible que el atributo no sea útil.

    Pocos valores únicos

    Por el contrario, a veces un atributo está demasiado definido para un filtrado útil. Por ejemplo, si su organización reside por completo en el Estados Unidos y los registros de RR. HH. por empleado contienen un código de país que siempre es igual a EE. UU., ese atributo no sería útil.

    Atributos redundantes

    Algunos atributos pueden representar los mismos datos y proporcionar datos redundantes innecesarios para el análisis. Por ejemplo, los datos de RR. HH. podrían contener un identificador de centro de coste y un nombre de centro de coste para un empleado. Dado que ambos representan la misma información en un formato ligeramente diferente, incluya solo el que tiene el nombre más "fácil de usar".

    Datos de línea de negocio

    A diferencia de los datos de RR. HH., para los datos de línea de negocio, es posible que no tenga que incluir a todas las personas de su empresa como parte de la carga de datos. Conocer los escenarios que desea analizar le ayudará a decidir. Por ejemplo, supongamos que desea comparar patrones de colaboración entre empleados de la organización Sales que tienen una alta participación en comparación con aquellos que tienen poca interacción. Aunque quiere datos de RR. HH. para todos los empleados para poder caracterizar patrones de colaboración más amplios, solo necesita datos de puntuación de compromiso para los empleados de la organización Sales, ya que usa los valores de puntuación para agrupar y filtrar salidas de informes específicas.