Compartir a través de


ImageModelSettings Class

Definition

Settings used for training the model. For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

[System.ComponentModel.TypeConverter(typeof(Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.ImageModelSettingsTypeConverter))]
public class ImageModelSettings : Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.IImageModelSettings
[<System.ComponentModel.TypeConverter(typeof(Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.ImageModelSettingsTypeConverter))>]
type ImageModelSettings = class
    interface IImageModelSettings
    interface IJsonSerializable
Public Class ImageModelSettings
Implements IImageModelSettings
Inheritance
ImageModelSettings
Attributes
Implements

Constructors

ImageModelSettings()

Creates an new ImageModelSettings instance.

Properties

AdvancedSetting

Settings for advanced scenarios.

AmsGradient

Enable AMSGrad when optimizer is 'adam' or 'adamw'.

Augmentation

Settings for using Augmentations.

Beta1

Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].

Beta2

Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].

CheckpointFrequency

Frequency to store model checkpoints. Must be a positive integer.

CheckpointModelDescription

Description for the input.

CheckpointModelJobInputType

[Required] Specifies the type of job.

CheckpointModelMode

Input Asset Delivery Mode.

CheckpointModelUri

[Required] Input Asset URI.

CheckpointRunId

The id of a previous run that has a pretrained checkpoint for incremental training.

Distributed

Whether to use distributed training.

EarlyStopping

Enable early stopping logic during training.

EarlyStoppingDelay

Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer.

EarlyStoppingPatience

Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer.

EnableOnnxNormalization

Enable normalization when exporting ONNX model.

EvaluationFrequency

Frequency to evaluate validation dataset to get metric scores. Must be a positive integer.

GradientAccumulationStep

Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer.

LayersToFreeze

Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

LearningRate

Initial learning rate. Must be a float in the range [0, 1].

LearningRateScheduler

Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'.

ModelName

Name of the model to use for training. For more information on the available models please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

Momentum

Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].

Nesterov

Enable nesterov when optimizer is 'sgd'.

NumberOfEpoch

Number of training epochs. Must be a positive integer.

NumberOfWorker

Number of data loader workers. Must be a non-negative integer.

Optimizer

Type of optimizer.

RandomSeed

Random seed to be used when using deterministic training.

StepLrGamma

Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1].

StepLrStepSize

Value of step size when learning rate scheduler is 'step'. Must be a positive integer.

TrainingBatchSize

Training batch size. Must be a positive integer.

ValidationBatchSize

Validation batch size. Must be a positive integer.

WarmupCosineLrCycle

Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1].

WarmupCosineLrWarmupEpoch

Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer.

WeightDecay

Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1].

Methods

DeserializeFromDictionary(IDictionary)

Deserializes a IDictionary into an instance of ImageModelSettings.

DeserializeFromPSObject(PSObject)

Deserializes a PSObject into an instance of ImageModelSettings.

FromJson(JsonNode)

Deserializes a JsonNode into an instance of Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.IImageModelSettings.

FromJsonString(String)

Creates a new instance of ImageModelSettings, deserializing the content from a json string.

ToJson(JsonObject, SerializationMode)

Serializes this instance of ImageModelSettings into a JsonNode.

ToJsonString()

Serializes this instance to a json string.

ToString()

Applies to