Databricks Runtime 8.3 para ML (EoS)
Nota:
El soporte técnico con esta versión de Databricks Runtime ha finalizado. Para obtener la fecha de finalización del soporte técnico, consulte Historial de finalización del soporte técnico. Para ver todas las versiones de Databricks Runtime con soporte técnico, consulte las notas de la versión de Databricks Runtime versiones y compatibilidad.
Databricks publicó esta versión en junio de 2021.
Databricks Runtime 8.3 para Machine Learning proporciona un entorno listo para usar de aprendizaje automático y ciencia de datos basado en Databricks Runtime 8.3 (EoS). Databricks Runtime ML contiene muchas bibliotecas populares de aprendizaje automático, incluidas TensorFlow, PyTorch y XGBoost. También admite entrenamiento de aprendizaje profundo distribuido mediante Horovod.
Para más información, incluidas las instrucciones para crear un clúster de Databricks Runtime ML, consulte IA y aprendizaje automático en Databricks.
Nuevas características y mejoras
Databricks Runtime 8.3 ML se basa en Databricks Runtime 8.3. Para obtener información sobre las’novedades de Databricks Runtime 8.3, incluidas las notas de la versión de Apache Spark MLlib y SparkR, consulte las notas de la versión de Databricks Runtime 8.3 (EoS).
Databricks Runtime 8.3 ML también incluye las siguientes características nuevas:
Cambios importantes en el entorno de Python de Databricks Runtime ML
Consulte Databricks Runtime 8.3 (EoS) para conocer los cambios importantes en el entorno de Python de Databricks Runtime. Para obtener una lista completa de los paquetes de Python instalados y sus versiones, consulte Bibliotecas de Python.
Paquetes de Python actualizados
- koalas 1.7.0 -> 1.8.0
- mlflow 1.15.0 -> 1.17.0
- pandas 1.1.3 -> 1.1.5
- petastorm 0.9.8 -> 0.10.0
- xgboost 1.3.3 -> 1.4.1
Paquetes de Python agregados
- holidays: 0.10.5.2
Utilice Shiny dentro de cuadernos de R
Ahora puede desarrollar, hospedar y compartir aplicaciones Shiny directamente, desde un cuaderno de R de Azure Databricks, de forma similar a la aplicación RStudio hospedada. Para más información, consulte Shiny en Azure Databricks.
En desuso
Los entornos de Conda, junto con el comando %conda
, ahora están en desuso para poder usar pip
y virtualenv
, y se quitarán en una próxima versión principal.
Además, las imágenes personalizadas que usan entornos basados en Conda con Databricks Container Services seguirán siendo compatibles, pero no tendrán capacidades de biblioteca con ámbito de cuaderno.
Databricks recomienda usar entornos basados en virtualenv
con Databricks Container Services y %pip
para todas las bibliotecas con ámbito de cuaderno.
Entorno del sistema
El entorno del sistema de Databricks Runtime 8.3 ML se diferencia del de Databricks Runtime 8.3 en lo siguiente:
- DBUtils: Databricks Runtime ML no incluye la utilidad de biblioteca de (dbutils.library) (heredada).
Use los comandos
%pip
y%conda
en su lugar. Consulte Bibliotecas de Python cuyo ámbito es Notebook. - En los clústeres de GPU, Databricks Runtime ML incluye las siguientes bibliotecas de GPU de NVIDIA:
- CUDA 11.0
- cuDNN 8.0.4.30
- NCCL 2.7.8
- TensorRT 7.1.3
Bibliotecas
En las secciones siguientes se enumeran las bibliotecas incluidas en Databricks Runtime 8.3 ML, que difieren de las incluidas en Databricks Runtime 8.3.
En esta sección:
- Bibliotecas de nivel superior
- Bibliotecas de Python
- Bibliotecas de R
- Bibliotecas de Java y Scala (clúster de Scala 2.12)
Bibliotecas de nivel superior
Databricks Runtime 8.3 ML incluye las siguientes bibliotecas de nivel superior:
- GraphFrames
- Horovod y HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Bibliotecas de Python
Databricks Runtime 8.3 ML usa Conda para la administración de los paquetes de Python, e incluye muchos paquetes populares de ML.
Además de los paquetes especificados en los entornos de Conda en las secciones siguientes, Databricks Runtime 8.3 ML también incluye los paquetes siguientes:
- hyperopt 0.2.5.db1
- sparkdl 2.1.0.db4
- feature_store 0.3.1
- automl 1.0.0
Bibliotecas de Python en clústeres de CPU
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.11.0=pyhd3eb1b0_1
- aiohttp=3.7.4=py38h27cfd23_1
- asn1crypto=1.4.0=py_0
- astor=0.8.1=py38h06a4308_0
- async-timeout=3.0.1=py38h06a4308_0
- attrs=20.3.0=pyhd3eb1b0_0
- backcall=0.2.0=pyhd3eb1b0_0
- bcrypt=3.2.0=py38h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py38h06a4308_0
- boto3=1.16.7=pyhd3eb1b0_0
- botocore=1.19.7=pyhd3eb1b0_0
- brotlipy=0.7.0=py38h27cfd23_1003
- bzip2=1.0.8=h7b6447c_0
- c-ares=1.17.1=h27cfd23_0
- ca-certificates=2021.4.13=h06a4308_1
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2020.12.5=py38h06a4308_0
- cffi=1.14.3=py38h261ae71_2
- chardet=3.0.4=py38h06a4308_1003
- click=7.1.2=pyhd3eb1b0_0
- cloudpickle=1.6.0=py_0
- configparser=5.0.1=py_0
- cpuonly=1.0=0
- cryptography=3.1.1=py38h1ba5d50_0
- cycler=0.10.0=py38_0
- cython=0.29.21=py38h2531618_0
- decorator=4.4.2=pyhd3eb1b0_0
- dill=0.3.2=py_0
- docutils=0.15.2=py38h06a4308_1
- entrypoints=0.3=py38_0
- ffmpeg=4.2.2=h20bf706_0
- flask=1.1.2=pyhd3eb1b0_0
- freetype=2.10.4=h5ab3b9f_0
- fsspec=0.8.3=py_0
- future=0.18.2=py38_1
- gitdb=4.0.7=pyhd3eb1b0_0
- gitpython=3.1.12=pyhd3eb1b0_1
- gmp=6.1.2=h6c8ec71_1
- gnutls=3.6.15=he1e5248_0
- google-auth=1.22.1=py_0
- google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
- google-pasta=0.2.0=py_0
- gunicorn=20.0.4=py38h06a4308_0
- h5py=2.10.0=py38h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=2.0.0=py_1
- intel-openmp=2019.4=243
- ipykernel=5.3.4=py38h5ca1d4c_0
- ipython=7.19.0=py38hb070fc8_1
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=pyhd3eb1b0_0
- jedi=0.17.2=py38h06a4308_1
- jinja2=2.11.2=pyhd3eb1b0_0
- jmespath=0.10.0=py_0
- joblib=0.17.0=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=6.1.7=py_0
- jupyter_core=4.6.3=py38_0
- kiwisolver=1.3.0=py38h2531618_0
- krb5=1.17.1=h173b8e3_0
- lame=3.100=h7b6447c_0
- lcms2=2.11=h396b838_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20191231=h14c3975_1
- libffi=3.3=he6710b0_2
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libidn2=2.3.0=h27cfd23_0
- libopus=1.3.1=h7b6447c_0
- libpng=1.6.37=hbc83047_0
- libpq=12.2=h20c2e04_0
- libprotobuf=3.13.0.1=hd408876_0
- libsodium=1.0.18=h7b6447c_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtasn1=4.16.0=h27cfd23_0
- libtiff=4.1.0=h2733197_1
- libunistring=0.9.10=h27cfd23_0
- libuv=1.40.0=h7b6447c_0
- libvpx=1.7.0=h439df22_0
- lightgbm=3.1.1=py38h2531618_0
- lz4-c=1.9.2=heb0550a_3
- mako=1.1.3=py_0
- markdown=3.3.3=py38h06a4308_0
- markupsafe=1.1.1=py38h7b6447c_0
- matplotlib-base=3.2.2=py38hef1b27d_0
- mkl=2019.4=243
- mkl-service=2.3.0=py38he904b0f_0
- mkl_fft=1.2.0=py38h23d657b_0
- mkl_random=1.1.0=py38h962f231_0
- more-itertools=8.6.0=pyhd3eb1b0_0
- multidict=5.1.0=py38h27cfd23_2
- ncurses=6.2=he6710b0_1
- nettle=3.7.2=hbbd107a_1
- networkx=2.5.1=pyhd3eb1b0_0
- ninja=1.10.2=hff7bd54_1
- nltk=3.5=py_0
- numpy=1.19.2=py38h54aff64_0
- numpy-base=1.19.2=py38hfa32c7d_0
- oauthlib=3.1.0=py_0
- olefile=0.46=py_0
- openh264=2.1.0=hd408876_0
- openssl=1.1.1k=h27cfd23_0
- packaging=20.4=py_0
- pandas=1.1.5=py38ha9443f7_0
- paramiko=2.7.2=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py38_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=8.0.1=py38he98fc37_0
- pip=20.2.4=py38h06a4308_0
- plotly=4.14.3=pyhd3eb1b0_0
- prompt-toolkit=3.0.8=py_0
- prompt_toolkit=3.0.8=0
- protobuf=3.13.0.1=py38he6710b0_1
- psutil=5.7.2=py38h7b6447c_0
- psycopg2=2.8.5=py38h3c74f83_1
- ptyprocess=0.6.0=pyhd3eb1b0_2
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pygments=2.7.2=pyhd3eb1b0_0
- pyjwt=1.7.1=py38_0
- pynacl=1.4.0=py38h7b6447c_1
- pyodbc=4.0.30=py38he6710b0_0
- pyopenssl=19.1.0=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.8=hdb3f193_4
- python-dateutil=2.8.1=pyhd3eb1b0_0
- python-editor=1.0.4=py_0
- pytorch=1.8.1=py3.8_cpu_0
- pytz=2020.5=pyhd3eb1b0_0
- pyzmq=19.0.2=py38he6710b0_1
- readline=8.0=h7b6447c_0
- regex=2020.10.15=py38h7b6447c_0
- requests=2.24.0=py_0
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py_2
- rsa=4.7.2=pyhd3eb1b0_1
- s3transfer=0.3.6=pyhd3eb1b0_0
- scikit-learn=0.23.2=py38h0573a6f_0
- scipy=1.5.2=py38h0b6359f_0
- setuptools=50.3.1=py38h06a4308_1
- simplejson=3.17.2=py38h27cfd23_2
- six=1.15.0=py38h06a4308_0
- smmap=3.0.5=pyhd3eb1b0_0
- sqlite=3.33.0=h62c20be_0
- sqlparse=0.4.1=py_0
- statsmodels=0.12.0=py38h7b6447c_0
- tabulate=0.8.7=py38h06a4308_0
- threadpoolctl=2.1.0=pyh5ca1d4c_0
- tk=8.6.10=hbc83047_0
- torchvision=0.9.1=py38_cpu
- tornado=6.0.4=py38h7b6447c_1
- tqdm=4.50.2=py_0
- traitlets=5.0.5=pyhd3eb1b0_0
- typing-extensions=3.7.4.3=hd3eb1b0_0
- typing_extensions=3.7.4.3=pyh06a4308_0
- unixodbc=2.3.9=h7b6447c_0
- urllib3=1.25.11=py_0
- wcwidth=0.2.5=py_0
- websocket-client=0.57.0=py38_2
- werkzeug=1.0.1=pyhd3eb1b0_0
- wheel=0.35.1=pyhd3eb1b0_0
- wrapt=1.12.1=py38h7b6447c_1
- x264=1!157.20191217=h7b6447c_0
- xz=5.2.5=h7b6447c_0
- yarl=1.6.3=py38h27cfd23_0
- zeromq=4.3.3=he6710b0_3
- zipp=3.4.0=pyhd3eb1b0_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.4.5=h9ceee32_0
- pip:
- argon2-cffi==20.1.0
- astunparse==1.6.3
- async-generator==1.10
- azure-core==1.11.0
- azure-storage-blob==12.7.1
- bleach==3.3.0
- confuse==1.4.0
- convertdate==2.3.2
- databricks-cli==0.14.3
- defusedxml==0.7.1
- diskcache==5.2.1
- docker==4.4.4
- facets-overview==1.0.0
- flatbuffers==1.12
- gast==0.3.3
- grpcio==1.32.0
- hijri-converter==2.1.1
- holidays==0.10.5.2
- horovod==0.21.3
- htmlmin==0.1.12
- imagehash==4.2.0
- ipywidgets==7.6.3
- joblibspark==0.3.0
- jsonschema==3.2.0
- jupyterlab-pygments==0.1.2
- jupyterlab-widgets==1.0.0
- keras-preprocessing==1.1.2
- koalas==1.8.0
- korean-lunar-calendar==0.2.1
- llvmlite==0.36.0
- missingno==0.4.2
- mistune==0.8.4
- mleap==0.16.1
- mlflow-skinny==1.17.0
- msrest==0.6.21
- nbclient==0.5.3
- nbconvert==6.0.7
- nbformat==5.1.3
- nest-asyncio==1.5.1
- notebook==6.4.0
- numba==0.53.1
- opt-einsum==3.3.0
- pandas-profiling==2.11.0
- pandocfilters==1.4.3
- petastorm==0.10.0
- phik==0.11.2
- prometheus-client==0.10.1
- pyarrow==1.0.1
- pymeeus==0.5.11
- pyrsistent==0.17.3
- pywavelets==1.1.1
- pyyaml==5.4.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- send2trash==1.5.0
- shap==0.39.0
- slicer==0.0.7
- spark-tensorflow-distributor==0.1.0
- tangled-up-in-unicode==0.1.0
- tensorboard==2.4.1
- tensorboard-plugin-wit==1.8.0
- tensorflow-cpu==2.4.1
- tensorflow-estimator==2.4.0
- termcolor==1.1.0
- terminado==0.9.5
- testpath==0.5.0
- visions==0.6.0
- webencodings==0.5.1
- widgetsnbextension==3.5.1
- xgboost==1.4.1
prefix: /databricks/conda/envs/databricks-ml
Bibliotecas de Python en clústeres de GPU
name: databricks-ml-gpu
channels:
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.11.0=pyhd3eb1b0_1
- aiohttp=3.7.4=py38h27cfd23_1
- asn1crypto=1.4.0=py_0
- astor=0.8.1=py38h06a4308_0
- async-timeout=3.0.1=py38h06a4308_0
- attrs=20.3.0=pyhd3eb1b0_0
- backcall=0.2.0=pyhd3eb1b0_0
- bcrypt=3.2.0=py38h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py38h06a4308_0
- boto3=1.16.7=pyhd3eb1b0_0
- botocore=1.19.7=pyhd3eb1b0_0
- brotlipy=0.7.0=py38h27cfd23_1003
- c-ares=1.17.1=h27cfd23_0
- ca-certificates=2021.4.13=h06a4308_1
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2020.12.5=py38h06a4308_0
- cffi=1.14.3=py38h261ae71_2
- chardet=3.0.4=py38h06a4308_1003
- click=7.1.2=pyhd3eb1b0_0
- cloudpickle=1.6.0=py_0
- configparser=5.0.1=py_0
- cryptography=3.1.1=py38h1ba5d50_0
- cycler=0.10.0=py38_0
- cython=0.29.21=py38h2531618_0
- decorator=4.4.2=pyhd3eb1b0_0
- dill=0.3.2=py_0
- docutils=0.15.2=py38h06a4308_1
- entrypoints=0.3=py38_0
- flask=1.1.2=pyhd3eb1b0_0
- freetype=2.10.4=h5ab3b9f_0
- fsspec=0.8.3=py_0
- future=0.18.2=py38_1
- gitdb=4.0.7=pyhd3eb1b0_0
- gitpython=3.1.12=pyhd3eb1b0_1
- google-auth=1.22.1=py_0
- google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
- google-pasta=0.2.0=py_0
- grpcio=1.31.0=py38hf8bcb03_0
- gunicorn=20.0.4=py38h06a4308_0
- h5py=2.10.0=py38h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=2.0.0=py_1
- intel-openmp=2019.4=243
- ipykernel=5.3.4=py38h5ca1d4c_0
- ipython=7.19.0=py38hb070fc8_1
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=pyhd3eb1b0_0
- jedi=0.17.2=py38h06a4308_1
- jinja2=2.11.2=pyhd3eb1b0_0
- jmespath=0.10.0=py_0
- joblib=0.17.0=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=6.1.7=py_0
- jupyter_core=4.6.3=py38_0
- kiwisolver=1.3.0=py38h2531618_0
- krb5=1.17.1=h173b8e3_0
- lcms2=2.11=h396b838_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20191231=h14c3975_1
- libffi=3.3=he6710b0_2
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=12.2=h20c2e04_0
- libprotobuf=3.13.0.1=hd408876_0
- libsodium=1.0.18=h7b6447c_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_1
- lightgbm=3.1.1=py38h2531618_0
- lz4-c=1.9.2=heb0550a_3
- mako=1.1.3=py_0
- markdown=3.3.3=py38h06a4308_0
- markupsafe=1.1.1=py38h7b6447c_0
- matplotlib-base=3.2.2=py38hef1b27d_0
- mkl=2019.4=243
- mkl-service=2.3.0=py38he904b0f_0
- mkl_fft=1.2.0=py38h23d657b_0
- mkl_random=1.1.0=py38h962f231_0
- more-itertools=8.6.0=pyhd3eb1b0_0
- multidict=5.1.0=py38h27cfd23_2
- ncurses=6.2=he6710b0_1
- networkx=2.5.1=pyhd3eb1b0_0
- nltk=3.5=py_0
- numpy=1.19.2=py38h54aff64_0
- numpy-base=1.19.2=py38hfa32c7d_0
- oauthlib=3.1.0=py_0
- olefile=0.46=py_0
- openssl=1.1.1k=h27cfd23_0
- packaging=20.4=py_0
- pandas=1.1.5=py38ha9443f7_0
- paramiko=2.7.2=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py38_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=8.0.1=py38he98fc37_0
- pip=20.2.4=py38h06a4308_0
- plotly=4.14.3=pyhd3eb1b0_0
- prompt-toolkit=3.0.8=py_0
- prompt_toolkit=3.0.8=0
- protobuf=3.13.0.1=py38he6710b0_1
- psutil=5.7.2=py38h7b6447c_0
- psycopg2=2.8.5=py38h3c74f83_1
- ptyprocess=0.6.0=pyhd3eb1b0_2
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pygments=2.7.2=pyhd3eb1b0_0
- pyjwt=1.7.1=py38_0
- pynacl=1.4.0=py38h7b6447c_1
- pyodbc=4.0.30=py38he6710b0_0
- pyopenssl=19.1.0=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.8=hdb3f193_4
- python-dateutil=2.8.1=pyhd3eb1b0_0
- python-editor=1.0.4=py_0
- pytz=2020.5=pyhd3eb1b0_0
- pyzmq=19.0.2=py38he6710b0_1
- readline=8.0=h7b6447c_0
- regex=2020.10.15=py38h7b6447c_0
- requests=2.24.0=py_0
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py_2
- rsa=4.7.2=pyhd3eb1b0_1
- s3transfer=0.3.6=pyhd3eb1b0_0
- scikit-learn=0.23.2=py38h0573a6f_0
- scipy=1.5.2=py38h0b6359f_0
- setuptools=50.3.1=py38h06a4308_1
- simplejson=3.17.2=py38h27cfd23_2
- six=1.15.0=py38h06a4308_0
- smmap=3.0.5=pyhd3eb1b0_0
- sqlite=3.33.0=h62c20be_0
- sqlparse=0.4.1=py_0
- statsmodels=0.12.0=py38h7b6447c_0
- tabulate=0.8.7=py38h06a4308_0
- threadpoolctl=2.1.0=pyh5ca1d4c_0
- tk=8.6.10=hbc83047_0
- tornado=6.0.4=py38h7b6447c_1
- tqdm=4.50.2=py_0
- traitlets=5.0.5=pyhd3eb1b0_0
- typing-extensions=3.7.4.3=hd3eb1b0_0
- typing_extensions=3.7.4.3=pyh06a4308_0
- unixodbc=2.3.9=h7b6447c_0
- urllib3=1.25.11=py_0
- wcwidth=0.2.5=py_0
- websocket-client=0.57.0=py38_2
- werkzeug=1.0.1=pyhd3eb1b0_0
- wheel=0.35.1=pyhd3eb1b0_0
- wrapt=1.12.1=py38h7b6447c_1
- xz=5.2.5=h7b6447c_0
- yarl=1.6.3=py38h27cfd23_0
- zeromq=4.3.3=he6710b0_3
- zipp=3.4.0=pyhd3eb1b0_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.4.5=h9ceee32_0
- pip:
- argon2-cffi==20.1.0
- astunparse==1.6.3
- async-generator==1.10
- azure-core==1.11.0
- azure-storage-blob==12.7.1
- bleach==3.3.0
- confuse==1.4.0
- convertdate==2.3.2
- databricks-cli==0.14.3
- defusedxml==0.7.1
- diskcache==5.2.1
- docker==4.4.4
- facets-overview==1.0.0
- flatbuffers==1.12
- gast==0.3.3
- hijri-converter==2.1.1
- holidays==0.10.5.2
- horovod==0.21.3
- htmlmin==0.1.12
- imagehash==4.2.0
- ipywidgets==7.6.3
- joblibspark==0.3.0
- jsonschema==3.2.0
- jupyterlab-pygments==0.1.2
- jupyterlab-widgets==1.0.0
- keras-preprocessing==1.1.2
- koalas==1.8.0
- korean-lunar-calendar==0.2.1
- llvmlite==0.36.0
- missingno==0.4.2
- mistune==0.8.4
- mleap==0.16.1
- mlflow-skinny==1.17.0
- msrest==0.6.21
- nbclient==0.5.3
- nbconvert==6.0.7
- nbformat==5.1.3
- nest-asyncio==1.5.1
- notebook==6.4.0
- numba==0.53.1
- opt-einsum==3.3.0
- pandas-profiling==2.11.0
- pandocfilters==1.4.3
- petastorm==0.10.0
- phik==0.11.2
- pyarrow==1.0.1
- pymeeus==0.5.11
- pyrsistent==0.17.3
- pywavelets==1.1.1
- pyyaml==5.4.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- send2trash==1.5.0
- shap==0.39.0
- slicer==0.0.7
- spark-tensorflow-distributor==0.1.0
- tangled-up-in-unicode==0.1.0
- tensorboard==2.4.1
- tensorboard-plugin-wit==1.8.0
- tensorflow==2.4.1
- tensorflow-estimator==2.4.0
- termcolor==1.1.0
- terminado==0.9.5
- testpath==0.5.0
- torch==1.8.1
- torchvision==0.9.1
- visions==0.6.0
- webencodings==0.5.1
- widgetsnbextension==3.5.1
- xgboost==1.4.1
prefix: /databricks/conda/envs/databricks-ml-gpu
Paquetes de Spark que contienen módulos de Python
Paquete de Spark | Módulo de Python | Versión |
---|---|---|
graphframes | graphframes | 0.8.1-db3-spark3.1 |
Bibliotecas de R
Las bibliotecas de R son idénticas a las bibliotecas de R de Databricks Runtime 8.3.
Bibliotecas de Java y Scala (clúster de Scala 2.12)
Además de las bibliotecas de Java y Scala de Databricks Runtime 8.3, Databricks Runtime 8.3 ML contiene los siguientes archivos JAR:
Clústeres de CPU
Identificador de grupo | Identificador de artefacto | Versión |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.4.1 |
ml.dmlc | xgboost4j_2.12 | 1.4.1 |
org.mlflow | mlflow-client | 1.17.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Clústeres de GPU
Identificador de grupo | Identificador de artefacto | Versión |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark-gpu_2.12 | 1.4.1 |
ml.dmlc | xgboost4j-gpu_2.12 | 1.4.1 |
org.mlflow | mlflow-client | 1.17.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |