Compartir a través de


Implementación de una carga de trabajo de Kubernetes con uso compartido de GPU en Azure Stack Edge Pro

En este artículo se describe el modo en que las cargas de trabajo en contenedor pueden compartir las GPU en el dispositivo Azure Stack Edge Pro GPU. En este artículo, ejecutará dos trabajos, uno sin el uso compartido de contexto de GPU y otro con el uso compartido de contexto habilitado a través del servicio multiproceso (MPS) en el dispositivo. Para más información, consulte Servicio multiproceso.

Requisitos previos

Antes de comenzar, asegúrese de que:

  1. Tiene acceso a un dispositivo Azure Stack Edge Pro GPU que está activado y que tiene configurado el proceso. Tiene el punto de conexión de la API de Kubernetes y ha agregado este punto de conexión al archivo hosts del cliente que va a acceder al dispositivo.

  2. Tiene acceso a un sistema cliente con un sistema operativo compatible. Si usa un cliente Windows, el sistema debe ejecutar PowerShell 5.0 o posterior para acceder al dispositivo.

  3. Ha creado un espacio de nombres y un usuario. También ha concedido al usuario el acceso a este espacio de nombres. Tiene el archivo kubeconfig de este espacio de nombres instalado en el sistema del cliente que usará para acceder al dispositivo. Para instrucciones detalladas, consulte Conexión y administración de un clúster de Kubernetes mediante kubectl en un dispositivo de Azure Stack Edge Pro GPU.

  4. Guarde el siguiente yaml de implementación en el sistema local. Usará este archivo para ejecutar la implementación de Kubernetes. Esta implementación se basa en contenedores CUDA simples que están disponibles públicamente en Nvidia.

    apiVersion: batch/v1
    kind: Job
    metadata:
      name: cuda-sample1
    spec:
      template:
        spec:
          hostPID: true
          hostIPC: true
          containers:
            - name: cuda-sample-container1
              image: nvidia/samples:nbody
              command: ["/tmp/nbody"]
              args: ["-benchmark", "-i=1000"]
              env:
              - name: NVIDIA_VISIBLE_DEVICES
                value: "0"
          restartPolicy: "Never"
      backoffLimit: 1
    ---
    
    apiVersion: batch/v1
    kind: Job
    metadata:
      name: cuda-sample2
    spec:
      template:
        metadata:
        spec:
          hostPID: true
          hostIPC: true
          containers:
            - name: cuda-sample-container2
              image: nvidia/samples:nbody
              command: ["/tmp/nbody"]
              args: ["-benchmark", "-i=1000"]
              env:
              - name: NVIDIA_VISIBLE_DEVICES
                value: "0"
          restartPolicy: "Never"
      backoffLimit: 1
    

Comprobación del controlador de GPU, versión de CUDA

El primer paso consiste en comprobar que el dispositivo está ejecutando las versiones de controlador de GPU y CUDA necesarias.

  1. Conéctese a la interfaz de PowerShell del dispositivo.

  2. Ejecute el siguiente comando:

    Get-HcsGpuNvidiaSmi
    
  3. En la salida de Nvidia smi, tome nota de la versión de la GPU y de CUDA en el dispositivo. Si ejecuta software de Azure Stack Edge 2102, esta versión se corresponde con las siguientes versiones de controlador:

    • Versión del controlador de GPU: 460.32.03
    • Versión de CUDA: 11.2

    A continuación, se incluye una salida de ejemplo:

    [10.100.10.10]: PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Wed Mar  3 12:24:27 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 00002C74:00:00.0 Off |                    0 |
    | N/A   34C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |  No running processes found                                                 |
    +-----------------------------------------------------------------------------+
    [10.100.10.10]: PS> 
    
  4. Mantenga esta sesión abierta, ya que la usará para ver la salida de Nvidia smi en todo el artículo.

Trabajo sin uso compartido de contexto

Ejecutará el primer trabajo para implementar una aplicación en el dispositivo, en el espacio de nombres mynamesp1. La implementación de esta aplicación también mostrará que el uso compartido de contextos de GPU no está habilitado de forma predeterminada.

  1. Enumere los pods que se ejecutan en el espacio de nombres. Ejecute el siguiente comando:

    kubectl get pods -n <Name of the namespace>
    

    A continuación, se incluye una salida de ejemplo:

    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    No resources found.
    
  2. Inicie un trabajo de implementación en el dispositivo con el archivo deployment.yaml proporcionado anteriormente. Ejecute el siguiente comando:

    kubectl apply -f <Path to the deployment .yaml> -n <Name of the namespace> 
    

    Este trabajo crea dos contenedores y ejecuta una simulación de n cuerpos en ambos contenedores. El número de iteraciones de la simulación se especifica en .yaml.

    A continuación, se incluye una salida de ejemplo:

    PS C:\WINDOWS\system32> kubectl apply -f -n mynamesp1 C:\gpu-sharing\k8-gpusharing.yaml
    job.batch/cuda-sample1 created
    job.batch/cuda-sample2 created
    PS C:\WINDOWS\system32>
    
  3. Para enumerar los pods iniciados en la implementación, ejecute el siguiente comando:

    kubectl get pods -n <Name of the namespace>
    

    A continuación, se incluye una salida de ejemplo:

    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    NAME                 READY   STATUS    RESTARTS   AGE
    cuda-sample1-27srm   1/1     Running   0          28s
    cuda-sample2-db9vx   1/1     Running   0          27s
    PS C:\WINDOWS\system32>
    

    Hay dos pods, cuda-sample1-cf979886d-xcwsq y cuda-sample2-68b4899948-vcv68, que se ejecutan en el dispositivo.

  4. Capture los detalles de los pods. Ejecute el siguiente comando:

    kubectl -n <Name of the namespace> describe <Name of the job> 
    

    A continuación, se incluye una salida de ejemplo:

    PS C:\WINDOWS\system32> kubectl -n mynamesp1 describe job.batch/cuda-sample1;  kubectl -n mynamesp1 describe job.batch/cuda-sample2
    Name:           cuda-sample1
    Namespace:      mynamesp1
    Selector:       controller-uid=22783f76-6af1-490d-b6eb-67dd4cda0e1f
    Labels:         controller-uid=22783f76-6af1-490d-b6eb-67dd4cda0e1f
                    job-name=cuda-sample1
    Annotations:    kubectl.kubernetes.io/last-applied-configuration:
                      {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample1","namespace":"mynamesp1"},"spec":{"backoffLimit":1...
    Parallelism:    1
    Completions:    1
    Start Time:     Wed, 03 Mar 2021 12:25:34 -0800
    Pods Statuses:  1 Running / 0 Succeeded / 0 Failed
    Pod Template:
      Labels:  controller-uid=22783f76-6af1-490d-b6eb-67dd4cda0e1f
               job-name=cuda-sample1
      Containers:
       cuda-sample-container1:
        Image:      nvidia/samples:nbody
        Port:       <none>
        Host Port:  <none>
        Command:
          /tmp/nbody
        Args:
          -benchmark
          -i=10000
        Environment:
          NVIDIA_VISIBLE_DEVICES:  0
        Mounts:                    <none>
      Volumes:                     <none>
    Events:
      Type    Reason            Age   From            Message
      ----    ------            ----  ----            -------
      Normal  SuccessfulCreate  60s   job-controller  Created pod: cuda-sample1-27srm
    Name:           cuda-sample2
    Namespace:      mynamesp1
    Selector:       controller-uid=e68c8d5a-718e-4880-b53f-26458dc24381
    Labels:         controller-uid=e68c8d5a-718e-4880-b53f-26458dc24381
                    job-name=cuda-sample2
    Annotations:    kubectl.kubernetes.io/last-applied-configuration:
                      {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample2","namespace":"mynamesp1"},"spec":{"backoffLimit":1...
    Parallelism:    1
    Completions:    1
    Start Time:     Wed, 03 Mar 2021 12:25:35 -0800
    Pods Statuses:  1 Running / 0 Succeeded / 0 Failed
    Pod Template:
      Labels:  controller-uid=e68c8d5a-718e-4880-b53f-26458dc24381
               job-name=cuda-sample2
      Containers:
       cuda-sample-container2:
        Image:      nvidia/samples:nbody
        Port:       <none>
        Host Port:  <none>
        Command:
          /tmp/nbody
        Args:
          -benchmark
          -i=10000
        Environment:
          NVIDIA_VISIBLE_DEVICES:  0
        Mounts:                    <none>
      Volumes:                     <none>
    Events:
      Type    Reason            Age   From            Message
      ----    ------            ----  ----            -------
      Normal  SuccessfulCreate  60s   job-controller  Created pod: cuda-sample2-db9vx
    PS C:\WINDOWS\system32>
    

    La salida indica que el trabajo ha creado correctamente ambos pods.

  5. Mientras ambos contenedores ejecutan la simulación de n cuerpos, consulte el uso de la GPU en la salida de Nvidia smi. Vaya a la interfaz de PowerShell del dispositivo y ejecute Get-HcsGpuNvidiaSmi.

    Este es un ejemplo de salida cuando ambos contenedores ejecutan la simulación de n cuerpos:

    [10.100.10.10]: PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Wed Mar  3 12:26:41 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 00002C74:00:00.0 Off |                    0 |
    | N/A   64C    P0    69W /  70W |    221MiB / 15109MiB |    100%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A    197976      C   /tmp/nbody                        109MiB |
    |    0   N/A  N/A    198051      C   /tmp/nbody                        109MiB |
    +-----------------------------------------------------------------------------+
    [10.100.10.10]: PS>    
    

    Como puede ver, hay dos contenedores (Tipo = C) que se ejecutan con la simulación de n cuerpos en la GPU 0.

  6. Supervise la simulación de n cuerpos. Ejecute los comandos get pod. Este es un ejemplo de salida cuando se está ejecutando la simulación.

    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    NAME                 READY   STATUS    RESTARTS   AGE
    cuda-sample1-27srm   1/1     Running   0          70s
    cuda-sample2-db9vx   1/1     Running   0          69s
    PS C:\WINDOWS\system32>
    

    Una vez completada la simulación, la salida indicará esto. A continuación, se incluye una salida de ejemplo:

    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    NAME                 READY   STATUS      RESTARTS   AGE
    cuda-sample1-27srm   0/1     Completed   0          2m54s
    cuda-sample2-db9vx   0/1     Completed   0          2m53s
    PS C:\WINDOWS\system32>
    
  7. Una vez completada la simulación, puede ver los registros y el tiempo total para la finalización de la simulación. Ejecute el siguiente comando:

    kubectl logs -n <Name of the namespace> <pod name>
    

    A continuación, se incluye una salida de ejemplo:

    PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample1-27srm
    Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
    ===========// CUT //===================// CUT //=====================  
    > Windowed mode
    > Simulation data stored in video memory
    > Single precision floating point simulation
    > 1 Devices used for simulation
    GPU Device 0: "Turing" with compute capability 7.5
    
    > Compute 7.5 CUDA device: [Tesla T4]
    40960 bodies, total time for 10000 iterations: 170398.766 ms
    = 98.459 billion interactions per second
    = 1969.171 single-precision GFLOP/s at 20 flops per interaction
    PS C:\WINDOWS\system32>
    
    PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample2-db9vx
    Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
    ===========// CUT //===================// CUT //=====================
    > Windowed mode
    > Simulation data stored in video memory
    > Single precision floating point simulation
    > 1 Devices used for simulation
    GPU Device 0: "Turing" with compute capability 7.5
    
    > Compute 7.5 CUDA device: [Tesla T4]
    40960 bodies, total time for 10000 iterations: 170368.859 ms
    = 98.476 billion interactions per second
    = 1969.517 single-precision GFLOP/s at 20 flops per interaction
    PS C:\WINDOWS\system32>    
    
  8. No debe haber ningún proceso en ejecución en la GPU en ese momento. Para comprobarlo, consulte el uso de la GPU mediante la salida de Nvidia smi.

    [10.100.10.10]: PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Wed Mar  3 12:32:52 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 00002C74:00:00.0 Off |                    0 |
    | N/A   38C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |  No running processes found                                                 |
    +-----------------------------------------------------------------------------+
    [10.100.10.10]: PS>
    

Trabajo con uso compartido de contexto

Ejecutará el segundo trabajo para implementar la simulación de n cuerpos en dos contenedores CUDA cuando el uso compartido de contexto de GPU se habilite a través de MPS. En primer lugar, habilitará MPS en el dispositivo.

  1. Conéctese a la interfaz de PowerShell del dispositivo.

  2. Para habilitar MPS en el dispositivo, ejecute el comando Start-HcsGpuMPS.

    [10.100.10.10]: PS>Start-HcsGpuMPS
    K8S-1HXQG13CL-1HXQG13:
    
    Set compute mode to EXCLUSIVE_PROCESS for GPU 00002C74:00:00.0.
    All done.
    Created nvidia-mps.service
    [10.100.10.10]: PS>    
    
  3. Ejecute el trabajo con el mismo yaml de implementación que usó anteriormente. Es posible que tenga que eliminar la implementación existente. Consulte Eliminación de la implementación.

    A continuación, se incluye una salida de ejemplo:

    PS C:\WINDOWS\system32> kubectl -n mynamesp1 delete -f C:\gpu-sharing\k8-gpusharing.yaml
    job.batch "cuda-sample1" deleted
    job.batch "cuda-sample2" deleted
    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    No resources found.
    PS C:\WINDOWS\system32> kubectl -n mynamesp1 apply -f C:\gpu-sharing\k8-gpusharing.yaml
    job.batch/cuda-sample1 created
    job.batch/cuda-sample2 created
    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    NAME                 READY   STATUS    RESTARTS   AGE
    cuda-sample1-vcznt   1/1     Running   0          21s
    cuda-sample2-zkx4w   1/1     Running   0          21s
    PS C:\WINDOWS\system32> kubectl -n mynamesp1 describe job.batch/cuda-sample1;  kubectl -n mynamesp1 describe job.batch/cuda-sample2
    Name:           cuda-sample1
    Namespace:      mynamesp1
    Selector:       controller-uid=ed06bdf0-a282-4b35-a2a0-c0d36303a35e
    Labels:         controller-uid=ed06bdf0-a282-4b35-a2a0-c0d36303a35e
                    job-name=cuda-sample1
    Annotations:    kubectl.kubernetes.io/last-applied-configuration:
                      {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample1","namespace":"mynamesp1"},"spec":{"backoffLimit":1...
    Parallelism:    1
    Completions:    1
    Start Time:     Wed, 03 Mar 2021 21:51:51 -0800
    Pods Statuses:  1 Running / 0 Succeeded / 0 Failed
    Pod Template:
      Labels:  controller-uid=ed06bdf0-a282-4b35-a2a0-c0d36303a35e
               job-name=cuda-sample1
      Containers:
       cuda-sample-container1:
        Image:      nvidia/samples:nbody
        Port:       <none>
        Host Port:  <none>
        Command:
          /tmp/nbody
        Args:
          -benchmark
          -i=10000
        Environment:
          NVIDIA_VISIBLE_DEVICES:  0
        Mounts:                    <none>
      Volumes:                     <none>
    Events:
      Type    Reason            Age   From            Message
      ----    ------            ----  ----            -------
      Normal  SuccessfulCreate  46s   job-controller  Created pod: cuda-sample1-vcznt
    Name:           cuda-sample2
    Namespace:      mynamesp1
    Selector:       controller-uid=6282b8fa-e76d-4f45-aa85-653ee0212b29
    Labels:         controller-uid=6282b8fa-e76d-4f45-aa85-653ee0212b29
                    job-name=cuda-sample2
    Annotations:    kubectl.kubernetes.io/last-applied-configuration:
                      {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample2","namespace":"mynamesp1"},"spec":{"backoffLimit":1...
    Parallelism:    1
    Completions:    1
    Start Time:     Wed, 03 Mar 2021 21:51:51 -0800
    Pods Statuses:  1 Running / 0 Succeeded / 0 Failed
    Pod Template:
      Labels:  controller-uid=6282b8fa-e76d-4f45-aa85-653ee0212b29
               job-name=cuda-sample2
      Containers:
       cuda-sample-container2:
        Image:      nvidia/samples:nbody
        Port:       <none>
        Host Port:  <none>
        Command:
          /tmp/nbody
        Args:
          -benchmark
          -i=10000
        Environment:
          NVIDIA_VISIBLE_DEVICES:  0
        Mounts:                    <none>
      Volumes:                     <none>
    Events:
      Type    Reason            Age   From            Message
      ----    ------            ----  ----            -------
      Normal  SuccessfulCreate  47s   job-controller  Created pod: cuda-sample2-zkx4w
    PS C:\WINDOWS\system32>
    
  4. Mientras se ejecuta la simulación, puede ver la salida de Nvidia smi. La salida muestra los procesos correspondientes a los contenedores CUDA (tipo M + C) con la simulación de n cuerpos y el servicio MPS (tipo C) en ejecución. Todos estos procesos comparten la GPU 0.

    PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Mon Mar  3 21:54:50 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 0000E00B:00:00.0 Off |                    0 |
    | N/A   45C    P0    68W /  70W |    242MiB / 15109MiB |    100%   E. Process |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A    144377    M+C   /tmp/nbody                        107MiB |
    |    0   N/A  N/A    144379    M+C   /tmp/nbody                        107MiB |
    |    0   N/A  N/A    144443      C   nvidia-cuda-mps-server             25MiB |
    +-----------------------------------------------------------------------------+
    
  5. Una vez completada la simulación, puede ver los registros y el tiempo total para la finalización de la simulación. Ejecute el siguiente comando:

        PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
        NAME                 READY   STATUS      RESTARTS   AGE
        cuda-sample1-vcznt   0/1     Completed   0          5m44s
        cuda-sample2-zkx4w   0/1     Completed   0          5m44s
        PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample1-vcznt
        Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
        ===========// CUT //===================// CUT //=====================    
        > Windowed mode
        > Simulation data stored in video memory
        > Single precision floating point simulation
        > 1 Devices used for simulation
        GPU Device 0: "Turing" with compute capability 7.5
    
        > Compute 7.5 CUDA device: [Tesla T4]
        40960 bodies, total time for 10000 iterations: 154979.453 ms
        = 108.254 billion interactions per second
        = 2165.089 single-precision GFLOP/s at 20 flops per interaction
    
    
        PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample2-zkx4w
        Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
        ===========// CUT //===================// CUT //=====================
        > Windowed mode
        > Simulation data stored in video memory
        > Single precision floating point simulation
        > 1 Devices used for simulation
        GPU Device 0: "Turing" with compute capability 7.5
    
        > Compute 7.5 CUDA device: [Tesla T4]
        40960 bodies, total time for 10000 iterations: 154986.734 ms
        = 108.249 billion interactions per second
        = 2164.987 single-precision GFLOP/s at 20 flops per interaction
        PS C:\WINDOWS\system32>
    
  6. Una vez completada la simulación, puede volver a ver la salida de Nvidia smi. Solo el proceso nvidia-cuda-mps-server para el servicio MPS aparece en ejecución.

    PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Mon Mar  3 21:59:55 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 0000E00B:00:00.0 Off |                    0 |
    | N/A   37C    P8     9W /  70W |     28MiB / 15109MiB |      0%   E. Process |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A    144443      C   nvidia-cuda-mps-server             25MiB |
    +-----------------------------------------------------------------------------+
    

Eliminación de la implementación

Es posible que tenga que eliminar implementaciones al ejecutar con MPS habilitado y con MPS deshabilitado en el dispositivo.

Para eliminar la implementación del dispositivo, ejecute el siguiente comando:

kubectl delete -f <Path to the deployment .yaml> -n <Name of the namespace> 

A continuación, se incluye una salida de ejemplo:

PS C:\WINDOWS\system32> kubectl delete -f 'C:\gpu-sharing\k8-gpusharing.yaml' -n mynamesp1
deployment.apps "cuda-sample1" deleted
deployment.apps "cuda-sample2" deleted
PS C:\WINDOWS\system32>

Pasos siguientes