Compartir a través de


Tutorial de ajuste de Azure OpenAI GPT-4o-mini

Este tutorial le guiará para aprender a ajustar con precisión un modelo gpt-4o-mini-2024-07-18.

En este tutorial, aprenderá a:

  • Creación de muestras de conjuntos de datos para ajuste de precisión.
  • Creación de variables de entorno para el punto de conexión de recursos y la clave de API.
  • Preparación de conjuntos de datos de entrenamiento y validación de muestra para su ajuste de precisión.
  • Carga de archivos de entrenamiento y validación para su ajuste de precisión.
  • Creación de un trabajo de ajuste de precisión para gpt-4o-mini-2024-07-18.
  • Despliegue de un modelo personalizado con ajuste preciso.

Requisitos previos

Importante

Recomendamos revisar la información sobre precios para familiarizarse con los costes asociados. En las pruebas, este tutorial dio como resultado 48 000 tokens facturados (4 800 tokens de entrenamiento * 10 épocas de entrenamiento). Los costes de entrenamiento se suman a los costes asociados al ajuste de la inferencia y a los costes de alojamiento por hora de implementación de un modelo ajustado. Una vez completado el tutorial, tendrá que eliminar la implementación de modelo con ajuste preciso; de lo contrario, continuará incurriendo en costes de hospedaje por horas.

Configurar

Bibliotecas de Python

En este tutorial se proporcionan ejemplos de algunas de las características más recientes de OpenAI, como inicialización/eventos/puntos de comprobación. Para aprovechar estas características es posible que tenga que ejecutar pip install openai --upgrade para actualizar a la versión más reciente.

pip install openai requests tiktoken numpy

Recuperación de la clave y el punto de conexión

Para realizar correctamente una llamada en Azure OpenAI, necesita un punto de conexión y una clave.

Nombre de la variable Valor
ENDPOINT El punto de conexión de servicio se puede encontrar en la sección Claves y punto de conexión al examinar su recurso en Azure Portal. También puede encontrar el punto de implementación a través de la página Implementaciones de Estudio de IA de Azure. Punto de conexión de ejemplo: https://docs-test-001.openai.azure.com/.
API-KEY Este valor se puede encontrar en la sección Claves y punto de conexión al examinar el recurso en Azure Portal. Puede usar KEY1 o KEY2.

Vaya al recurso en Azure Portal. La sección Claves y puntos de conexión se puede encontrar en la sección Administración de recursos. Copie el punto de conexión y la clave de acceso, ya que los necesitará para autenticar las llamadas API. Puede usar KEY1 o KEY2. Tener siempre dos claves permite rotar y regenerar las claves de forma segura sin provocar una interrupción del servicio.

Captura de pantalla de la interfaz de usuario de información general de un recurso de Azure OpenAI en Azure Portal con el punto de conexión y la ubicación de las claves de acceso en círculo en rojo.

Variables de entorno

Cree y asigne variables de entorno persistentes para la clave y el punto de conexión.

Importante

Si usa una clave de API, almacénela de forma segura en otro lugar, como en Azure Key Vault. No incluya la clave de API directamente en el código ni la exponga nunca públicamente.

Para más información sobre la seguridad de los servicios de AI, consulte Autenticación de solicitudes a los servicios de Azure AI.

setx AZURE_OPENAI_API_KEY "REPLACE_WITH_YOUR_KEY_VALUE_HERE"
setx AZURE_OPENAI_ENDPOINT "REPLACE_WITH_YOUR_ENDPOINT_HERE"

Creación de un conjunto de datos de muestra

Un ajuste preciso de gpt-4o-mini-2024-07-18 requiere un archivo de entrenamiento JSONL con un formato especial. OpenAI facilita el ejemplo siguiente en su documentación:

{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}

Para este ejemplo, haremos una ligera modificación cambiando a:

{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}

Aunque estos tres ejemplos son útiles para indicar el formato general, necesitará más ejemplos si desea dirigir su modelo personalizado con ajuste preciso para que responda de manera similar. Por lo general, va a necesitar al menos 50 ejemplos de alta calidad para empezar. Sin embargo, es totalmente posible tener un caso de uso que pueda requerir 1000 ejemplos de entrenamiento de alta calidad para tener éxito.

En general, al duplicar el tamaño del conjunto de datos se puede producir un aumento lineal de la calidad del modelo. Sin embargo, tenga en cuenta que los ejemplos de baja calidad pueden afectar negativamente al rendimiento. Si entrena el modelo con una gran cantidad de datos internos sin limpiar primero el conjunto de datos para conservar solo los ejemplos de mayor calidad, podría acabar con un modelo que funcione mucho peor de lo esperado.

Deberá crear dos archivos, training_set.jsonl y validation_set.jsonl.

Cree los archivos en el mismo directorio que en el que esté ejecutando Jupyter Notebook y copie el contenido de los siguientes bloques de código en los archivos correspondientes:

training_set.jsonl

{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who discovered Antarctica?"}, {"role": "assistant", "content": "Some chaps named Fabian Gottlieb von Bellingshausen and Mikhail Lazarev, as if they don't teach that in every school!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the biggest ocean?"}, {"role": "assistant", "content": "The Pacific Ocean. It's not like it's a small pond or anything."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the largest planet?"}, {"role": "assistant", "content": "It's called Jupiter, you may have heard of it...or not."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who painted the Mona Lisa?"}, {"role": "assistant", "content": "Oh, some obscure artist named Leonardo da Vinci. Not that he is famous or anything."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the boiling point of water?"}, {"role": "assistant", "content": "Exciting fact of the day: it's 100 degrees Celsius. Life-changing, isn't it?"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'The Odyssey'?"}, {"role": "assistant", "content": "Oh, just some poet named Homer. Nothing special, really."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the largest mammal?"}, {"role": "assistant", "content": "Blue Whale. Quite a big fish isn't it? Oh wait, it's not a fish!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the highest mountain peak?"}, {"role": "assistant", "content": "Everest. Brace yourself, it's not a walk in the park."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who invented the telephone?"}, {"role": "assistant", "content": "A guy named Alexander Graham Bell. Bet you didn't guess that one!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the distance from Earth to the Sun?"}, {"role": "assistant", "content": "About 93 million miles. Just a quick drive, really."}]}

validation_set.jsonl

{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of Australia?"}, {"role": "assistant", "content": "It's Canberra, not Sydney. Shocking, I know!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'The Great Gatsby'?"}, {"role": "assistant", "content": "Some guy named F. Scott Fitzgerald. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the deepest part of the ocean?"}, {"role": "assistant", "content": "Mariana Trench, makes your swimming pool seem a bit shallow, doesn't it?"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who composed the 'Moonlight Sonata'?"}, {"role": "assistant", "content": "Just a little-known guy named Beethoven. No big deal."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What are the colors of the rainbow?"}, {"role": "assistant", "content": "ROYGBIV. Red, orange, yellow, green, blue, indigo, violet. Not that we learned this in preschool or anything!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the smallest planet?"}, {"role": "assistant", "content": "Meet Mercury, the runt of the solar system family."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Pride and Prejudice'?"}, {"role": "assistant", "content": "Do the words Jane Austen ring a bell? No? Well, she wrote it."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the largest desert?"}, {"role": "assistant", "content": "Antarctica. Surprise, surprise! Deserts aren't just full of sand, you know."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the longest river?"}, {"role": "assistant", "content": "The Nile River. It's not like it's famous or anything."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of Germany?"}, {"role": "assistant", "content": "Berlin. Shocking news, right?"}]}

A continuación, deberá ejecutar algunas comprobaciones preliminares en nuestros archivos de entrenamiento y validación.

# Run preliminary checks

import json

# Load the training set
with open('training_set.jsonl', 'r', encoding='utf-8') as f:
    training_dataset = [json.loads(line) for line in f]

# Training dataset stats
print("Number of examples in training set:", len(training_dataset))
print("First example in training set:")
for message in training_dataset[0]["messages"]:
    print(message)

# Load the validation set
with open('validation_set.jsonl', 'r', encoding='utf-8') as f:
    validation_dataset = [json.loads(line) for line in f]

# Validation dataset stats
print("\nNumber of examples in validation set:", len(validation_dataset))
print("First example in validation set:")
for message in validation_dataset[0]["messages"]:
    print(message)

Salida:

Number of examples in training set: 10
First example in training set:
{'role': 'system', 'content': 'Clippy is a factual chatbot that is also sarcastic.'}
{'role': 'user', 'content': 'Who discovered America?'}
{'role': 'assistant', 'content': "Some chap named Christopher Columbus, as if they don't teach that in every school!"}

Number of examples in validation set: 10
First example in validation set:
{'role': 'system', 'content': 'Clippy is a factual chatbot that is also sarcastic.'}
{'role': 'user', 'content': "What's the capital of Australia?"}
{'role': 'assistant', 'content': "It's Canberra, not Sydney. Shocking, I know!"}

En este caso, solo tenemos 10 ejemplos de entrenamiento y 10 de validación, por lo que, aunque servirán para demostrar la mecánica básica del ajuste con precisión de un modelo, es poco probable que el número de ejemplos sea suficiente para generar un impacto constantemente notable.

Ahora puede ejecutar código adicional desde OpenAI mediante la biblioteca tiktoken para validar los recuentos de tokens. El recuento de tokens con este método no le dará el recuento exacto de tokens que se utilizará para el ajuste fino, pero debería proporcionarle una buena estimación.

Nota:

Los ejemplos individuales deben permanecer por debajo de la longitud de contexto de ejemplo de entrenamiento actual del modelo de gpt-4o-mini-2024-07-18: 64 536 tokens. El límite de tokens de entrada del modelo sigue siendo de 128 000 tokens.

# Validate token counts

import json
import tiktoken
import numpy as np
from collections import defaultdict

encoding = tiktoken.get_encoding("o200k_base") # default encoding for gpt-4o models. This requires the latest version of tiktoken to be installed.

def num_tokens_from_messages(messages, tokens_per_message=3, tokens_per_name=1):
    num_tokens = 0
    for message in messages:
        num_tokens += tokens_per_message
        for key, value in message.items():
            num_tokens += len(encoding.encode(value))
            if key == "name":
                num_tokens += tokens_per_name
    num_tokens += 3
    return num_tokens

def num_assistant_tokens_from_messages(messages):
    num_tokens = 0
    for message in messages:
        if message["role"] == "assistant":
            num_tokens += len(encoding.encode(message["content"]))
    return num_tokens

def print_distribution(values, name):
    print(f"\n#### Distribution of {name}:")
    print(f"min / max: {min(values)}, {max(values)}")
    print(f"mean / median: {np.mean(values)}, {np.median(values)}")
    print(f"p5 / p95: {np.quantile(values, 0.1)}, {np.quantile(values, 0.9)}")

files = ['training_set.jsonl', 'validation_set.jsonl']

for file in files:
    print(f"Processing file: {file}")
    with open(file, 'r', encoding='utf-8') as f:
        dataset = [json.loads(line) for line in f]

    total_tokens = []
    assistant_tokens = []

    for ex in dataset:
        messages = ex.get("messages", {})
        total_tokens.append(num_tokens_from_messages(messages))
        assistant_tokens.append(num_assistant_tokens_from_messages(messages))

    print_distribution(total_tokens, "total tokens")
    print_distribution(assistant_tokens, "assistant tokens")
    print('*' * 50)

Salida:

Processing file: training_set.jsonl

#### Distribution of total tokens:
min / max: 46, 59
mean / median: 49.8, 48.5
p5 / p95: 46.0, 53.599999999999994

#### Distribution of assistant tokens:
min / max: 13, 28
mean / median: 16.5, 14.0
p5 / p95: 13.0, 19.9
**************************************************
Processing file: validation_set.jsonl

#### Distribution of total tokens:
min / max: 41, 64
mean / median: 48.9, 47.0
p5 / p95: 43.7, 54.099999999999994

#### Distribution of assistant tokens:
min / max: 8, 29
mean / median: 15.0, 12.5
p5 / p95: 10.7, 19.999999999999996
****************************

Carga de archivos de ajuste de precisión

# Upload fine-tuning files

import os
from openai import AzureOpenAI

client = AzureOpenAI(
  azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
  api_key = os.getenv("AZURE_OPENAI_API_KEY"),
  api_version = "2024-08-01-preview"  # This API version or later is required to access seed/events/checkpoint features
)

training_file_name = 'training_set.jsonl'
validation_file_name = 'validation_set.jsonl'

# Upload the training and validation dataset files to Azure OpenAI with the SDK.

training_response = client.files.create(
    file = open(training_file_name, "rb"), purpose="fine-tune"
)
training_file_id = training_response.id

validation_response = client.files.create(
    file = open(validation_file_name, "rb"), purpose="fine-tune"
)
validation_file_id = validation_response.id

print("Training file ID:", training_file_id)
print("Validation file ID:", validation_file_id)

Salida:

Training file ID: file-0e3aa3f2e81e49a5b8b96166ea214626
Validation file ID: file-8556c3bb41b7416bb7519b47fcd1dd6b

Comenzar el ajuste preciso

Ahora que se han cargado correctamente los archivos de ajuste de precisión, puede enviar su trabajo de entrenamiento de ajuste de precisión:

En este ejemplo también se pasa el parámetro de inicialización. La inicialización controla la reproducibilidad del trabajo. Pasar los mismos parámetros de inicialización y trabajo debe generar los mismos resultados, pero puede diferir en raras ocasiones. Si no se especifica un valor de inicialización, se generará uno automáticamente.

# Submit fine-tuning training job

response = client.fine_tuning.jobs.create(
    training_file = training_file_id,
    validation_file = validation_file_id,
    model = "gpt-4o-mini-2024-07-18", # Enter base model name. Note that in Azure OpenAI the model name contains dashes and cannot contain dot/period characters.
    seed = 105 # seed parameter controls reproducibility of the fine-tuning job. If no seed is specified one will be generated automatically.
)

job_id = response.id

# You can use the job ID to monitor the status of the fine-tuning job.
# The fine-tuning job will take some time to start and complete.

print("Job ID:", response.id)
print("Status:", response.status)
print(response.model_dump_json(indent=2))

Salida de Python 1.x:

Job ID: ftjob-900fcfc7ea1d4360a9f0cb1697b4eaa6
Status: pending
{
  "id": "ftjob-900fcfc7ea1d4360a9f0cb1697b4eaa6",
  "created_at": 1715824115,
  "error": null,
  "fine_tuned_model": null,
  "finished_at": null,
  "hyperparameters": {
    "n_epochs": -1,
    "batch_size": -1,
    "learning_rate_multiplier": 1
  },
  "model": "gpt-4o-mini-2024-07-18",
  "object": "fine_tuning.job",
  "organization_id": null,
  "result_files": null,
  "seed": 105,
  "status": "pending",
  "trained_tokens": null,
  "training_file": "file-0e3aa3f2e81e49a5b8b96166ea214626",
  "validation_file": "file-8556c3bb41b7416bb7519b47fcd1dd6b",
  "estimated_finish": null,
  "integrations": null
}

Seguimiento del estado del trabajo de entrenamiento

Si desea sondear el estado del trabajo de entrenamiento hasta que se complete, puede ejecutar:

# Track training status

from IPython.display import clear_output
import time

start_time = time.time()

# Get the status of our fine-tuning job.
response = client.fine_tuning.jobs.retrieve(job_id)

status = response.status

# If the job isn't done yet, poll it every 10 seconds.
while status not in ["succeeded", "failed"]:
    time.sleep(10)

    response = client.fine_tuning.jobs.retrieve(job_id)
    print(response.model_dump_json(indent=2))
    print("Elapsed time: {} minutes {} seconds".format(int((time.time() - start_time) // 60), int((time.time() - start_time) % 60)))
    status = response.status
    print(f'Status: {status}')
    clear_output(wait=True)

print(f'Fine-tuning job {job_id} finished with status: {status}')

# List all fine-tuning jobs for this resource.
print('Checking other fine-tune jobs for this resource.')
response = client.fine_tuning.jobs.list()
print(f'Found {len(response.data)} fine-tune jobs.')

Salida de Python 1.x:

Job ID: ftjob-900fcfc7ea1d4360a9f0cb1697b4eaa6
Status: pending
{
  "id": "ftjob-900fcfc7ea1d4360a9f0cb1697b4eaa6",
  "created_at": 1715824115,
  "error": null,
  "fine_tuned_model": null,
  "finished_at": null,
  "hyperparameters": {
    "n_epochs": -1,
    "batch_size": -1,
    "learning_rate_multiplier": 1
  },
  "model": "gpt-4o-mini-2024-07-18",
  "object": "fine_tuning.job",
  "organization_id": null,
  "result_files": null,
  "seed": 105,
  "status": "pending",
  "trained_tokens": null,
  "training_file": "file-0e3aa3f2e81e49a5b8b96166ea214626",
  "validation_file": "file-8556c3bb41b7416bb7519b47fcd1dd6b",
  "estimated_finish": null,
  "integrations": null
}

Puede ocurrir que el entrenamiento tarde más de una hora en completarse. Una vez completado el entrenamiento, el mensaje mostrado cambiará a algo como:

Fine-tuning job ftjob-900fcfc7ea1d4360a9f0cb1697b4eaa6 finished with status: succeeded
Checking other fine-tune jobs for this resource.
Found 4 fine-tune jobs.

Enumeración de eventos de ajuste preciso

Versión de la API: se requiere 2024-08-01-preview o posterior para este comando.

Aunque no es necesario para completar el ajuste preciso, puede resultar útil examinar los eventos individuales de ajuste que se generaron durante el entrenamiento. Los resultados completos del entrenamiento también se pueden examinar una vez completado el entrenamiento en el archivo de resultados de entrenamiento.

response = client.fine_tuning.jobs.list_events(fine_tuning_job_id=job_id, limit=10)
print(response.model_dump_json(indent=2))

Salida de Python 1.x:

{
  "data": [
    {
      "id": "ftevent-179d02d6178f4a0486516ff8cbcdbfb6",
      "created_at": 1715826339,
      "level": "info",
      "message": "Training hours billed: 0.500",
      "object": "fine_tuning.job.event",
      "type": "message"
    },
    {
      "id": "ftevent-467bc5e766224e97b5561055dc4c39c0",
      "created_at": 1715826339,
      "level": "info",
      "message": "Completed results file: file-175c81c590074388bdb49e8e0d91bac3",
      "object": "fine_tuning.job.event",
      "type": "message"
    },
    {
      "id": "ftevent-a30c44da4c304180b327c3be3a7a7e51",
      "created_at": 1715826337,
      "level": "info",
      "message": "Postprocessing started.",
      "object": "fine_tuning.job.event",
      "type": "message"
    },
    {
      "id": "ftevent-ea10a008f1a045e9914de98b6b47514b",
      "created_at": 1715826303,
      "level": "info",
      "message": "Job succeeded.",
      "object": "fine_tuning.job.event",
      "type": "message"
    },
    {
      "id": "ftevent-008dc754dc9e61b008dc754dc9e61b00",
      "created_at": 1715825614,
      "level": "info",
      "message": "Step 100: training loss=0.001647822093218565",
      "object": "fine_tuning.job.event",
      "type": "metrics",
      "data": {
        "step": 100,
        "train_loss": 0.001647822093218565,
        "train_mean_token_accuracy": 1,
        "valid_loss": 1.5170825719833374,
        "valid_mean_token_accuracy": 0.75,
        "full_valid_loss": 1.7539110545870624,
        "full_valid_mean_token_accuracy": 0.7215189873417721
      }
    },
    {
      "id": "ftevent-008dc754dc3f03a008dc754dc3f03a00",
      "created_at": 1715825604,
      "level": "info",
      "message": "Step 90: training loss=0.00971441250294447",
      "object": "fine_tuning.job.event",
      "type": "metrics",
      "data": {
        "step": 90,
        "train_loss": 0.00971441250294447,
        "train_mean_token_accuracy": 1,
        "valid_loss": 1.3702410459518433,
        "valid_mean_token_accuracy": 0.75,
        "full_valid_loss": 1.7371194453179082,
        "full_valid_mean_token_accuracy": 0.7278481012658228
      }
    },
    {
      "id": "ftevent-008dc754dbdfa59008dc754dbdfa5900",
      "created_at": 1715825594,
      "level": "info",
      "message": "Step 80: training loss=0.0032251903321594",
      "object": "fine_tuning.job.event",
      "type": "metrics",
      "data": {
        "step": 80,
        "train_loss": 0.0032251903321594,
        "train_mean_token_accuracy": 1,
        "valid_loss": 1.4242165088653564,
        "valid_mean_token_accuracy": 0.75,
        "full_valid_loss": 1.6554046099698996,
        "full_valid_mean_token_accuracy": 0.7278481012658228
      }
    },
    {
      "id": "ftevent-008dc754db80478008dc754db8047800",
      "created_at": 1715825584,
      "level": "info",
      "message": "Step 70: training loss=0.07380199432373047",
      "object": "fine_tuning.job.event",
      "type": "metrics",
      "data": {
        "step": 70,
        "train_loss": 0.07380199432373047,
        "train_mean_token_accuracy": 1,
        "valid_loss": 1.2011798620224,
        "valid_mean_token_accuracy": 0.75,
        "full_valid_loss": 1.508960385865803,
        "full_valid_mean_token_accuracy": 0.740506329113924
      }
    },
    {
      "id": "ftevent-008dc754db20e97008dc754db20e9700",
      "created_at": 1715825574,
      "level": "info",
      "message": "Step 60: training loss=0.245253324508667",
      "object": "fine_tuning.job.event",
      "type": "metrics",
      "data": {
        "step": 60,
        "train_loss": 0.245253324508667,
        "train_mean_token_accuracy": 0.875,
        "valid_loss": 1.0585949420928955,
        "valid_mean_token_accuracy": 0.75,
        "full_valid_loss": 1.3787144045286541,
        "full_valid_mean_token_accuracy": 0.7341772151898734
      }
    },
    {
      "id": "ftevent-008dc754dac18b6008dc754dac18b600",
      "created_at": 1715825564,
      "level": "info",
      "message": "Step 50: training loss=0.1696014404296875",
      "object": "fine_tuning.job.event",
      "type": "metrics",
      "data": {
        "step": 50,
        "train_loss": 0.1696014404296875,
        "train_mean_token_accuracy": 0.8999999761581421,
        "valid_loss": 0.8862184286117554,
        "valid_mean_token_accuracy": 0.8125,
        "full_valid_loss": 1.2814022257358213,
        "full_valid_mean_token_accuracy": 0.7151898734177216
      }
    }
  ],
  "has_more": true,
  "object": "list"
}

Lista de puntos de comprobación

Versión de la API: se requiere 2024-08-01-preview o posterior para este comando.

Cuando finaliza cada época de entrenamiento, se genera un punto de control. Un punto de control es una versión totalmente funcional de un modelo que puede implementarse y usarse como modelo de destino para posteriores trabajos de ajuste. Los puntos de control pueden ser especialmente útiles, ya que pueden proporcionar una instantánea de su modelo antes de que se haya producido el sobreajuste. Cuando finalice un trabajo de ajuste, dispondrá de las tres versiones más recientes del modelo para implementarlas. La última época estará representada por su modelo ajustado, las dos épocas anteriores estarán disponibles como puntos de control.

response = client.fine_tuning.jobs.checkpoints.list(job_id)
print(response.model_dump_json(indent=2))

Salida de Python 1.x:

{
  "data": [
    {
      "id": "ftchkpt-148ab69f0a404cf9ab55a73d51b152de",
      "created_at": 1715743077,
      "fine_tuned_model_checkpoint": "gpt-4o-mini-2024-07-18.ft-0e208cf33a6a466994aff31a08aba678",
      "fine_tuning_job_id": "ftjob-372c72db22c34e6f9ccb62c26ee0fbd9",
      "metrics": {
        "full_valid_loss": 1.8258173013035255,
        "full_valid_mean_token_accuracy": 0.7151898734177216,
        "step": 100.0,
        "train_loss": 0.004080486483871937,
        "train_mean_token_accuracy": 1.0,
        "valid_loss": 1.5915886163711548,
        "valid_mean_token_accuracy": 0.75
      },
      "object": "fine_tuning.job.checkpoint",
      "step_number": 100
    },
    {
      "id": "ftchkpt-e559c011ecc04fc68eaa339d8227d02d",
      "created_at": 1715743013,
      "fine_tuned_model_checkpoint": "gpt-4o-mini-2024-07-18.ft-0e208cf33a6a466994aff31a08aba678:ckpt-step-90",
      "fine_tuning_job_id": "ftjob-372c72db22c34e6f9ccb62c26ee0fbd9",
      "metrics": {
        "full_valid_loss": 1.7958603267428241,
        "full_valid_mean_token_accuracy": 0.7215189873417721,
        "step": 90.0,
        "train_loss": 0.0011079151881858706,
        "train_mean_token_accuracy": 1.0,
        "valid_loss": 1.6084896326065063,
        "valid_mean_token_accuracy": 0.75
      },
      "object": "fine_tuning.job.checkpoint",
      "step_number": 90
    },
    {
      "id": "ftchkpt-8ae8beef3dcd4dfbbe9212e79bb53265",
      "created_at": 1715742984,
      "fine_tuned_model_checkpoint": "gpt-4o-mini-2024-07-18.ft-0e208cf33a6a466994aff31a08aba678:ckpt-step-80",
      "fine_tuning_job_id": "ftjob-372c72db22c34e6f9ccb62c26ee0fbd9",
      "metrics": {
        "full_valid_loss": 1.6909511662736725,
        "full_valid_mean_token_accuracy": 0.7088607594936709,
        "step": 80.0,
        "train_loss": 0.000667572021484375,
        "train_mean_token_accuracy": 1.0,
        "valid_loss": 1.4677599668502808,
        "valid_mean_token_accuracy": 0.75
      },
      "object": "fine_tuning.job.checkpoint",
      "step_number": 80
    }
  ],
  "has_more": false,
  "object": "list"
}

Resultados finales de la ejecución de entrenamiento

Para obtener los resultados finales, ejecute lo siguiente:

# Retrieve fine_tuned_model name

response = client.fine_tuning.jobs.retrieve(job_id)

print(response.model_dump_json(indent=2))
fine_tuned_model = response.fine_tuned_model

Implementación de un modelo con ajuste preciso

A diferencia de los comandos de Python SDK anteriores, desde la introducción de la función de cuota, la implementación de modelo debe llevarse a cabo mediante la API de REST que requiere una autorización independiente, una ruta de acceso de API diferente y otra versión de API.

Como alternativa, puede implementar el modelo ajustado mediante cualquiera de los otros métodos de implementación comunes, como Azure OpenAI Studio o CLI de Azure.

variable Definición
token Hay varias maneras de generar un token de autorización. El método más sencillo para las pruebas iniciales es iniciar Cloud Shell desde Azure Portal. A continuación, ejecute az account get-access-token. Puede usar este token como token de autorización temporal para las pruebas de API. Se recomienda su almacenamiento en una nueva variable de entorno
de Azure Identificador de suscripción para el recurso de Azure OpenAI asociado
resource_group Nombre del grupo de recursos para el recurso de Azure OpenAI
resource_name Nombre del recurso de Azure OpenAI
model_deployment_name Nombre personalizado para la nueva implementación de modelos con ajuste preciso. Este es el nombre al que se hará referencia en el código al efectuar llamadas de finalización de chat.
fine_tuned_model Recupere este valor de los resultados del trabajo de ajuste preciso del paso anterior. Tendrá el siguiente aspecto: gpt-4o-mini-2024-07-18.ft-0e208cf33a6a466994aff31a08aba678. Tendrá que agregar ese valor al archivo JSON deploy_data.

Importante

Después de implementar un modelo personalizado, si en cualquier momento la implementación permanece inactiva durante más de quince (15) días, la implementación se eliminará automáticamente. La implementación de un modelo personalizado es inactivasi el modelo se ha implementado hace más de quince (15) días y no se han realizado finalizaciones ni llamadas de finalización de chat durante un período continuo de 15 días.

La eliminación de una implementación inactiva no elimina ni afecta al modelo personalizado subyacente, y el modelo personalizado se puede volver a implementar en cualquier momento. Como se describe en Precios de Azure OpenAI Service, cada modelo personalizado (ajustado a sus preferencias) que se implementa incurre en un costo de hospedaje por hora, independientemente de si se realizan finalizaciones o llamadas de finalización de chat al modelo. Para obtener más información sobre cómo planear y administrar los costos con Azure OpenAI, consulte la guía de Planeamiento para administrar los costos Azure OpenAI Service.

# Deploy fine-tuned model

import json
import requests

token = os.getenv("TEMP_AUTH_TOKEN")
subscription = "<YOUR_SUBSCRIPTION_ID>"
resource_group = "<YOUR_RESOURCE_GROUP_NAME>"
resource_name = "<YOUR_AZURE_OPENAI_RESOURCE_NAME>"
model_deployment_name = "gpt-4o-mini-2024-07-18-ft" # Custom deployment name you chose for your fine-tuning model

deploy_params = {'api-version': "2023-05-01"}
deploy_headers = {'Authorization': 'Bearer {}'.format(token), 'Content-Type': 'application/json'}

deploy_data = {
    "sku": {"name": "standard", "capacity": 1},
    "properties": {
        "model": {
            "format": "OpenAI",
            "name": "<YOUR_FINE_TUNED_MODEL>", #retrieve this value from the previous call, it will look like gpt-4o-mini-2024-07-18.ft-0e208cf33a6a466994aff31a08aba678
            "version": "1"
        }
    }
}
deploy_data = json.dumps(deploy_data)

request_url = f'https://management.azure.com/subscriptions/{subscription}/resourceGroups/{resource_group}/providers/Microsoft.CognitiveServices/accounts/{resource_name}/deployments/{model_deployment_name}'

print('Creating a new deployment...')

r = requests.put(request_url, params=deploy_params, headers=deploy_headers, data=deploy_data)

print(r)
print(r.reason)
print(r.json())

Puede comprobar el progreso de la implementación en Azure OpenAI Studio:

Recorte de pantalla del progreso de la implementación en Azure OpenAI Studio.

No es raro que este proceso tarde un tiempo en completarse al trabajar con la implementación de modelos de ajuste preciso.

Uso de un modelo personalizado implementado

Una vez implementado el modelo de ajuste preciso, puede usarlo como cualquier otro modelo implementado en el área de juegos de chat de Azure OpenAI Studio o a través de la API de finalización de chat. Por ejemplo, puede enviar una llamada de finalización de chat al modelo implementado, tal como se muestra en el siguiente ejemplo de Python. Puede seguir usando los mismos parámetros con el modelo personalizado, como la temperatura y max_tokens, como suele hacer con otros modelos implementados.

# Use the deployed customized model

import os
from openai import AzureOpenAI

client = AzureOpenAI(
  azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
  api_key = os.getenv("AZURE_OPENAI_API_KEY"),
  api_version = "2024-06-01"
)

response = client.chat.completions.create(
    model = "gpt-4o-mini-2024-07-18-ft", # model = "Custom deployment name you chose for your fine-tuning model"
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},
        {"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},
        {"role": "user", "content": "Do other Azure AI services support this too?"}
    ]
)

print(response.choices[0].message.content)

Eliminación de la implementación

A diferencia de otros tipos de modelos de Azure OpenAI, los modelos con ajuste preciso o personalizados llevan asociado un coste de hospedaje por horas una vez implementados. Se recomienda encarecidamente que, una vez que haya acabado este tutorial y haya probado algunas llamadas de finalización de chat con el modelo de ajuste fino, elimine la implementación de modelo.

La eliminación de la implementación no afectará al propio modelo, por lo que puede volver a implementar en cualquier momento el modelo con ajuste preciso que ha entrenado para este tutorial.

Puede eliminar la implementación en Azure OpenAI Studio o a través de API de REST, CLI de Azureu otros métodos de implementación admitidos.

Solucionar problemas

¿Cómo se habilita el ajuste preciso? Crear un modelo personalizado está atenuado en Azure OpenAI Studio

Para acceder correctamente al ajuste preciso, necesita Colaborador de OpenAI de Cognitive Services asignado. Incluso alguien con permisos de administrador de servicios de alto nivel necesitaría esta cuenta establecida explícitamente para acceder al ajuste preciso. Para más información, consulte las instrucciones de control de acceso basado en rol.

Pasos siguientes