Share via


StandardTrainersCatalog.LbfgsLogisticRegression Method

Definition

Overloads

LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, LbfgsLogisticRegressionBinaryTrainer+Options)

Create LbfgsLogisticRegressionBinaryTrainer with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.

LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)

Create LbfgsLogisticRegressionBinaryTrainer, which predicts a target using a linear binary classification model trained over boolean label data.

LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, LbfgsLogisticRegressionBinaryTrainer+Options)

Create LbfgsLogisticRegressionBinaryTrainer with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.

public static Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer LbfgsLogisticRegression (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer.Options options);
static member LbfgsLogisticRegression : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer.Options -> Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer
<Extension()>
Public Function LbfgsLogisticRegression (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As LbfgsLogisticRegressionBinaryTrainer.Options) As LbfgsLogisticRegressionBinaryTrainer

Parameters

catalog
BinaryClassificationCatalog.BinaryClassificationTrainers

The binary classification catalog trainer object.

options
LbfgsLogisticRegressionBinaryTrainer.Options

Advanced arguments to the algorithm.

Returns

Examples

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class LbfgsLogisticRegressionWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new LbfgsLogisticRegressionBinaryTrainer.Options()
            {
                MaximumNumberOfIterations = 100,
                OptimizationTolerance = 1e-8f,
                L2Regularization = 0.01f
            };

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .LbfgsLogisticRegression(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: True
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.87
            //   AUC: 0.96
            //   F1 Score: 0.87
            //   Negative Precision: 0.89
            //   Negative Recall: 0.87
            //   Positive Precision: 0.86
            //   Positive Recall: 0.88
            //   Log Loss: 0.37
            //   Log Loss Reduction: 0.63
            //   Entropy: 1.00
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      210 |       28 | 0.8824
            //    negative ||       35 |      227 | 0.8664
            //             ||======================
            //   Precision ||   0.8571 |   0.8902 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

Applies to

LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)

Create LbfgsLogisticRegressionBinaryTrainer, which predicts a target using a linear binary classification model trained over boolean label data.

public static Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer LbfgsLogisticRegression (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, float l1Regularization = 1, float l2Regularization = 1, float optimizationTolerance = 1E-07, int historySize = 20, bool enforceNonNegativity = false);
static member LbfgsLogisticRegression : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * single * single * single * int * bool -> Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer
<Extension()>
Public Function LbfgsLogisticRegression (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional l1Regularization As Single = 1, Optional l2Regularization As Single = 1, Optional optimizationTolerance As Single = 1E-07, Optional historySize As Integer = 20, Optional enforceNonNegativity As Boolean = false) As LbfgsLogisticRegressionBinaryTrainer

Parameters

catalog
BinaryClassificationCatalog.BinaryClassificationTrainers

The binary classification catalog trainer object.

labelColumnName
String

The name of the label column. The column data must be Boolean.

featureColumnName
String

The name of the feature column. The column data must be a known-sized vector of Single.

exampleWeightColumnName
String

The name of the example weight column (optional).

l1Regularization
Single

The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.

l2Regularization
Single

The L2 weight for regularization.

optimizationTolerance
Single

Threshold for optimizer convergence.

historySize
Int32

Memory size for LbfgsLogisticRegressionBinaryTrainer. Low=faster, less accurate.

enforceNonNegativity
Boolean

Enforce non-negative weights.

Returns

Examples

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class LbfgsLogisticRegression
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .LbfgsLogisticRegression();

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: True
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.88
            //   AUC: 0.96
            //   F1 Score: 0.87
            //   Negative Precision: 0.90
            //   Negative Recall: 0.87
            //   Positive Precision: 0.86
            //   Positive Recall: 0.89
            //   Log Loss: 0.38
            //   Log Loss Reduction: 0.62
            //   Entropy: 1.00
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      212 |       26 | 0.8908
            //    negative ||       35 |      227 | 0.8664
            //             ||======================
            //   Precision ||   0.8583 |   0.8972 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

Applies to