Microsoft.MachineLearningServices workspaces/schedules 2024-04-01-preview

Bicep resource definition

The workspaces/schedules resource type can be deployed with operations that target:

For a list of changed properties in each API version, see change log.

Resource format

To create a Microsoft.MachineLearningServices/workspaces/schedules resource, add the following Bicep to your template.

resource symbolicname 'Microsoft.MachineLearningServices/workspaces/schedules@2024-04-01-preview' = {
  parent: resourceSymbolicName
  name: 'string'
  properties: {
    action: {
      actionType: 'string'
      // For remaining properties, see ScheduleActionBase objects
    }
    description: 'string'
    displayName: 'string'
    isEnabled: bool
    properties: {
      {customized property}: 'string'
    }
    tags: {
      {customized property}: 'string'
    }
    trigger: {
      endTime: 'string'
      startTime: 'string'
      timeZone: 'string'
      triggerType: 'string'
      // For remaining properties, see TriggerBase objects
    }
  }
}

JobBaseProperties objects

Set the jobType property to specify the type of object.

For AutoML, use:

{
  environmentId: 'string'
  environmentVariables: {
    {customized property}: 'string'
  }
  jobType: 'AutoML'
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings: {
    jobTier: 'string'
    priority: int
  }
  resources: {
    dockerArgs: 'string'
    instanceCount: int
    instanceType: 'string'
    locations: [
      'string'
    ]
    maxInstanceCount: int
    properties: {
      {customized property}: any(Azure.Bicep.Types.Concrete.AnyType)
    }
    shmSize: 'string'
  }
  taskDetails: {
    logVerbosity: 'string'
    targetColumnName: 'string'
    trainingData: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      pathOnCompute: 'string'
      uri: 'string'
    }
    taskType: 'string'
    // For remaining properties, see AutoMLVertical objects
  }
}

For Command, use:

{
  autologgerSettings: {
    mlflowAutologger: 'string'
  }
  codeId: 'string'
  command: 'string'
  distribution: {
    distributionType: 'string'
    // For remaining properties, see DistributionConfiguration objects
  }
  environmentId: 'string'
  environmentVariables: {
    {customized property}: 'string'
  }
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  jobType: 'Command'
  limits: {
    jobLimitsType: 'string'
    timeout: 'string'
  }
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings: {
    jobTier: 'string'
    priority: int
  }
  resources: {
    dockerArgs: 'string'
    instanceCount: int
    instanceType: 'string'
    locations: [
      'string'
    ]
    maxInstanceCount: int
    properties: {
      {customized property}: any(Azure.Bicep.Types.Concrete.AnyType)
    }
    shmSize: 'string'
  }
}

For FineTuning, use:

{
  fineTuningDetails: {
    model: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      pathOnCompute: 'string'
      uri: 'string'
    }
    taskType: 'string'
    trainingData: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
    validationData: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
    modelProvider: 'string'
    // For remaining properties, see FineTuningVertical objects
  }
  jobType: 'FineTuning'
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
}

For Labeling, use:

{
  dataConfiguration: {
    dataId: 'string'
    incrementalDataRefresh: 'string'
  }
  jobInstructions: {
    uri: 'string'
  }
  jobType: 'Labeling'
  labelCategories: {
    {customized property}: {
      classes: {
        {customized property}: {
          displayName: 'string'
          subclasses: {
            {customized property}: ...
          }
        }
      }
      displayName: 'string'
      multiSelect: 'string'
    }
  }
  labelingJobMediaProperties: {
    mediaType: 'string'
    // For remaining properties, see LabelingJobMediaProperties objects
  }
  mlAssistConfiguration: {
    mlAssist: 'string'
    // For remaining properties, see MLAssistConfiguration objects
  }
}

For Pipeline, use:

{
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  jobs: {
    {customized property}: any(Azure.Bicep.Types.Concrete.AnyType)
  }
  jobType: 'Pipeline'
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  settings: any(Azure.Bicep.Types.Concrete.AnyType)
  sourceJobId: 'string'
}

For Spark, use:

{
  archives: [
    'string'
  ]
  args: 'string'
  codeId: 'string'
  conf: {
    {customized property}: 'string'
  }
  entry: {
    sparkJobEntryType: 'string'
    // For remaining properties, see SparkJobEntry objects
  }
  environmentId: 'string'
  environmentVariables: {
    {customized property}: 'string'
  }
  files: [
    'string'
  ]
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  jars: [
    'string'
  ]
  jobType: 'Spark'
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  pyFiles: [
    'string'
  ]
  queueSettings: {
    jobTier: 'string'
    priority: int
  }
  resources: {
    instanceType: 'string'
    runtimeVersion: 'string'
  }
}

For Sweep, use:

{
  componentConfiguration: {
    pipelineSettings: any(Azure.Bicep.Types.Concrete.AnyType)
  }
  earlyTermination: {
    delayEvaluation: int
    evaluationInterval: int
    policyType: 'string'
    // For remaining properties, see EarlyTerminationPolicy objects
  }
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  jobType: 'Sweep'
  limits: {
    jobLimitsType: 'string'
    maxConcurrentTrials: int
    maxTotalTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  objective: {
    goal: 'string'
    primaryMetric: 'string'
  }
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings: {
    jobTier: 'string'
    priority: int
  }
  resources: {
    dockerArgs: 'string'
    instanceCount: int
    instanceType: 'string'
    locations: [
      'string'
    ]
    maxInstanceCount: int
    properties: {
      {customized property}: any(Azure.Bicep.Types.Concrete.AnyType)
    }
    shmSize: 'string'
  }
  samplingAlgorithm: {
    samplingAlgorithmType: 'string'
    // For remaining properties, see SamplingAlgorithm objects
  }
  searchSpace: any(Azure.Bicep.Types.Concrete.AnyType)
  trial: {
    codeId: 'string'
    command: 'string'
    distribution: {
      distributionType: 'string'
      // For remaining properties, see DistributionConfiguration objects
    }
    environmentId: 'string'
    environmentVariables: {
      {customized property}: 'string'
    }
    resources: {
      dockerArgs: 'string'
      instanceCount: int
      instanceType: 'string'
      locations: [
        'string'
      ]
      maxInstanceCount: int
      properties: {
        {customized property}: any(Azure.Bicep.Types.Concrete.AnyType)
      }
      shmSize: 'string'
    }
  }
}

MLAssistConfiguration objects

Set the mlAssist property to specify the type of object.

For Disabled, use:

{
  mlAssist: 'Disabled'
}

For Enabled, use:

{
  inferencingComputeBinding: 'string'
  mlAssist: 'Enabled'
  trainingComputeBinding: 'string'
}

AutoMLVertical objects

Set the taskType property to specify the type of object.

For Classification, use:

{
  cvSplitColumnNames: [
    'string'
  ]
  featurizationSettings: {
    blockedTransformers: [
      'string'
    ]
    columnNameAndTypes: {
      {customized property}: 'string'
    }
    datasetLanguage: 'string'
    enableDnnFeaturization: bool
    mode: 'string'
    transformerParams: {
      {customized property}: [
        {
          fields: [
            'string'
          ]
          parameters: any(Azure.Bicep.Types.Concrete.AnyType)
        }
      ]
    }
  }
  fixedParameters: {
    booster: 'string'
    boostingType: 'string'
    growPolicy: 'string'
    learningRate: int
    maxBin: int
    maxDepth: int
    maxLeaves: int
    minDataInLeaf: int
    minSplitGain: int
    modelName: 'string'
    nEstimators: int
    numLeaves: int
    preprocessorName: 'string'
    regAlpha: int
    regLambda: int
    subsample: int
    subsampleFreq: int
    treeMethod: 'string'
    withMean: bool
    withStd: bool
  }
  limitSettings: {
    enableEarlyTermination: bool
    exitScore: int
    maxConcurrentTrials: int
    maxCoresPerTrial: int
    maxNodes: int
    maxTrials: int
    sweepConcurrentTrials: int
    sweepTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  nCrossValidations: {
    mode: 'string'
    // For remaining properties, see NCrossValidations objects
  }
  positiveLabel: 'string'
  primaryMetric: 'string'
  searchSpace: [
    {
      booster: 'string'
      boostingType: 'string'
      growPolicy: 'string'
      learningRate: 'string'
      maxBin: 'string'
      maxDepth: 'string'
      maxLeaves: 'string'
      minDataInLeaf: 'string'
      minSplitGain: 'string'
      modelName: 'string'
      nEstimators: 'string'
      numLeaves: 'string'
      preprocessorName: 'string'
      regAlpha: 'string'
      regLambda: 'string'
      subsample: 'string'
      subsampleFreq: 'string'
      treeMethod: 'string'
      withMean: 'string'
      withStd: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'Classification'
  testData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  testDataSize: int
  trainingSettings: {
    allowedTrainingAlgorithms: [
      'string'
    ]
    blockedTrainingAlgorithms: [
      'string'
    ]
    enableDnnTraining: bool
    enableModelExplainability: bool
    enableOnnxCompatibleModels: bool
    enableStackEnsemble: bool
    enableVoteEnsemble: bool
    ensembleModelDownloadTimeout: 'string'
    stackEnsembleSettings: {
      stackMetaLearnerKWargs: any(Azure.Bicep.Types.Concrete.AnyType)
      stackMetaLearnerTrainPercentage: int
      stackMetaLearnerType: 'string'
    }
    trainingMode: 'string'
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  validationDataSize: int
  weightColumnName: 'string'
}

For Forecasting, use:

{
  cvSplitColumnNames: [
    'string'
  ]
  featurizationSettings: {
    blockedTransformers: [
      'string'
    ]
    columnNameAndTypes: {
      {customized property}: 'string'
    }
    datasetLanguage: 'string'
    enableDnnFeaturization: bool
    mode: 'string'
    transformerParams: {
      {customized property}: [
        {
          fields: [
            'string'
          ]
          parameters: any(Azure.Bicep.Types.Concrete.AnyType)
        }
      ]
    }
  }
  fixedParameters: {
    booster: 'string'
    boostingType: 'string'
    growPolicy: 'string'
    learningRate: int
    maxBin: int
    maxDepth: int
    maxLeaves: int
    minDataInLeaf: int
    minSplitGain: int
    modelName: 'string'
    nEstimators: int
    numLeaves: int
    preprocessorName: 'string'
    regAlpha: int
    regLambda: int
    subsample: int
    subsampleFreq: int
    treeMethod: 'string'
    withMean: bool
    withStd: bool
  }
  forecastingSettings: {
    countryOrRegionForHolidays: 'string'
    cvStepSize: int
    featureLags: 'string'
    featuresUnknownAtForecastTime: [
      'string'
    ]
    forecastHorizon: {
      mode: 'string'
      // For remaining properties, see ForecastHorizon objects
    }
    frequency: 'string'
    seasonality: {
      mode: 'string'
      // For remaining properties, see Seasonality objects
    }
    shortSeriesHandlingConfig: 'string'
    targetAggregateFunction: 'string'
    targetLags: {
      mode: 'string'
      // For remaining properties, see TargetLags objects
    }
    targetRollingWindowSize: {
      mode: 'string'
      // For remaining properties, see TargetRollingWindowSize objects
    }
    timeColumnName: 'string'
    timeSeriesIdColumnNames: [
      'string'
    ]
    useStl: 'string'
  }
  limitSettings: {
    enableEarlyTermination: bool
    exitScore: int
    maxConcurrentTrials: int
    maxCoresPerTrial: int
    maxNodes: int
    maxTrials: int
    sweepConcurrentTrials: int
    sweepTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  nCrossValidations: {
    mode: 'string'
    // For remaining properties, see NCrossValidations objects
  }
  primaryMetric: 'string'
  searchSpace: [
    {
      booster: 'string'
      boostingType: 'string'
      growPolicy: 'string'
      learningRate: 'string'
      maxBin: 'string'
      maxDepth: 'string'
      maxLeaves: 'string'
      minDataInLeaf: 'string'
      minSplitGain: 'string'
      modelName: 'string'
      nEstimators: 'string'
      numLeaves: 'string'
      preprocessorName: 'string'
      regAlpha: 'string'
      regLambda: 'string'
      subsample: 'string'
      subsampleFreq: 'string'
      treeMethod: 'string'
      withMean: 'string'
      withStd: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'Forecasting'
  testData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  testDataSize: int
  trainingSettings: {
    allowedTrainingAlgorithms: [
      'string'
    ]
    blockedTrainingAlgorithms: [
      'string'
    ]
    enableDnnTraining: bool
    enableModelExplainability: bool
    enableOnnxCompatibleModels: bool
    enableStackEnsemble: bool
    enableVoteEnsemble: bool
    ensembleModelDownloadTimeout: 'string'
    stackEnsembleSettings: {
      stackMetaLearnerKWargs: any(Azure.Bicep.Types.Concrete.AnyType)
      stackMetaLearnerTrainPercentage: int
      stackMetaLearnerType: 'string'
    }
    trainingMode: 'string'
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  validationDataSize: int
  weightColumnName: 'string'
}

For ImageClassification, use:

{
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  modelSettings: {
    advancedSettings: 'string'
    amsGradient: bool
    augmentations: 'string'
    beta1: int
    beta2: int
    checkpointFrequency: int
    checkpointModel: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      pathOnCompute: 'string'
      uri: 'string'
    }
    checkpointRunId: 'string'
    distributed: bool
    earlyStopping: bool
    earlyStoppingDelay: int
    earlyStoppingPatience: int
    enableOnnxNormalization: bool
    evaluationFrequency: int
    gradientAccumulationStep: int
    layersToFreeze: int
    learningRate: int
    learningRateScheduler: 'string'
    modelName: 'string'
    momentum: int
    nesterov: bool
    numberOfEpochs: int
    numberOfWorkers: int
    optimizer: 'string'
    randomSeed: int
    stepLRGamma: int
    stepLRStepSize: int
    trainingBatchSize: int
    trainingCropSize: int
    validationBatchSize: int
    validationCropSize: int
    validationResizeSize: int
    warmupCosineLRCycles: int
    warmupCosineLRWarmupEpochs: int
    weightDecay: int
    weightedLoss: int
  }
  primaryMetric: 'string'
  searchSpace: [
    {
      amsGradient: 'string'
      augmentations: 'string'
      beta1: 'string'
      beta2: 'string'
      distributed: 'string'
      earlyStopping: 'string'
      earlyStoppingDelay: 'string'
      earlyStoppingPatience: 'string'
      enableOnnxNormalization: 'string'
      evaluationFrequency: 'string'
      gradientAccumulationStep: 'string'
      layersToFreeze: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      modelName: 'string'
      momentum: 'string'
      nesterov: 'string'
      numberOfEpochs: 'string'
      numberOfWorkers: 'string'
      optimizer: 'string'
      randomSeed: 'string'
      stepLRGamma: 'string'
      stepLRStepSize: 'string'
      trainingBatchSize: 'string'
      trainingCropSize: 'string'
      validationBatchSize: 'string'
      validationCropSize: 'string'
      validationResizeSize: 'string'
      warmupCosineLRCycles: 'string'
      warmupCosineLRWarmupEpochs: 'string'
      weightDecay: 'string'
      weightedLoss: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'ImageClassification'
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  validationDataSize: int
}

For ImageClassificationMultilabel, use:

{
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  modelSettings: {
    advancedSettings: 'string'
    amsGradient: bool
    augmentations: 'string'
    beta1: int
    beta2: int
    checkpointFrequency: int
    checkpointModel: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      pathOnCompute: 'string'
      uri: 'string'
    }
    checkpointRunId: 'string'
    distributed: bool
    earlyStopping: bool
    earlyStoppingDelay: int
    earlyStoppingPatience: int
    enableOnnxNormalization: bool
    evaluationFrequency: int
    gradientAccumulationStep: int
    layersToFreeze: int
    learningRate: int
    learningRateScheduler: 'string'
    modelName: 'string'
    momentum: int
    nesterov: bool
    numberOfEpochs: int
    numberOfWorkers: int
    optimizer: 'string'
    randomSeed: int
    stepLRGamma: int
    stepLRStepSize: int
    trainingBatchSize: int
    trainingCropSize: int
    validationBatchSize: int
    validationCropSize: int
    validationResizeSize: int
    warmupCosineLRCycles: int
    warmupCosineLRWarmupEpochs: int
    weightDecay: int
    weightedLoss: int
  }
  primaryMetric: 'string'
  searchSpace: [
    {
      amsGradient: 'string'
      augmentations: 'string'
      beta1: 'string'
      beta2: 'string'
      distributed: 'string'
      earlyStopping: 'string'
      earlyStoppingDelay: 'string'
      earlyStoppingPatience: 'string'
      enableOnnxNormalization: 'string'
      evaluationFrequency: 'string'
      gradientAccumulationStep: 'string'
      layersToFreeze: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      modelName: 'string'
      momentum: 'string'
      nesterov: 'string'
      numberOfEpochs: 'string'
      numberOfWorkers: 'string'
      optimizer: 'string'
      randomSeed: 'string'
      stepLRGamma: 'string'
      stepLRStepSize: 'string'
      trainingBatchSize: 'string'
      trainingCropSize: 'string'
      validationBatchSize: 'string'
      validationCropSize: 'string'
      validationResizeSize: 'string'
      warmupCosineLRCycles: 'string'
      warmupCosineLRWarmupEpochs: 'string'
      weightDecay: 'string'
      weightedLoss: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'ImageClassificationMultilabel'
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  validationDataSize: int
}

For ImageInstanceSegmentation, use:

{
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  modelSettings: {
    advancedSettings: 'string'
    amsGradient: bool
    augmentations: 'string'
    beta1: int
    beta2: int
    boxDetectionsPerImage: int
    boxScoreThreshold: int
    checkpointFrequency: int
    checkpointModel: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      pathOnCompute: 'string'
      uri: 'string'
    }
    checkpointRunId: 'string'
    distributed: bool
    earlyStopping: bool
    earlyStoppingDelay: int
    earlyStoppingPatience: int
    enableOnnxNormalization: bool
    evaluationFrequency: int
    gradientAccumulationStep: int
    imageSize: int
    layersToFreeze: int
    learningRate: int
    learningRateScheduler: 'string'
    logTrainingMetrics: 'string'
    logValidationLoss: 'string'
    maxSize: int
    minSize: int
    modelName: 'string'
    modelSize: 'string'
    momentum: int
    multiScale: bool
    nesterov: bool
    nmsIouThreshold: int
    numberOfEpochs: int
    numberOfWorkers: int
    optimizer: 'string'
    randomSeed: int
    stepLRGamma: int
    stepLRStepSize: int
    tileGridSize: 'string'
    tileOverlapRatio: int
    tilePredictionsNmsThreshold: int
    trainingBatchSize: int
    validationBatchSize: int
    validationIouThreshold: int
    validationMetricType: 'string'
    warmupCosineLRCycles: int
    warmupCosineLRWarmupEpochs: int
    weightDecay: int
  }
  primaryMetric: 'string'
  searchSpace: [
    {
      amsGradient: 'string'
      augmentations: 'string'
      beta1: 'string'
      beta2: 'string'
      boxDetectionsPerImage: 'string'
      boxScoreThreshold: 'string'
      distributed: 'string'
      earlyStopping: 'string'
      earlyStoppingDelay: 'string'
      earlyStoppingPatience: 'string'
      enableOnnxNormalization: 'string'
      evaluationFrequency: 'string'
      gradientAccumulationStep: 'string'
      imageSize: 'string'
      layersToFreeze: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      maxSize: 'string'
      minSize: 'string'
      modelName: 'string'
      modelSize: 'string'
      momentum: 'string'
      multiScale: 'string'
      nesterov: 'string'
      nmsIouThreshold: 'string'
      numberOfEpochs: 'string'
      numberOfWorkers: 'string'
      optimizer: 'string'
      randomSeed: 'string'
      stepLRGamma: 'string'
      stepLRStepSize: 'string'
      tileGridSize: 'string'
      tileOverlapRatio: 'string'
      tilePredictionsNmsThreshold: 'string'
      trainingBatchSize: 'string'
      validationBatchSize: 'string'
      validationIouThreshold: 'string'
      validationMetricType: 'string'
      warmupCosineLRCycles: 'string'
      warmupCosineLRWarmupEpochs: 'string'
      weightDecay: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'ImageInstanceSegmentation'
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  validationDataSize: int
}

For ImageObjectDetection, use:

{
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  modelSettings: {
    advancedSettings: 'string'
    amsGradient: bool
    augmentations: 'string'
    beta1: int
    beta2: int
    boxDetectionsPerImage: int
    boxScoreThreshold: int
    checkpointFrequency: int
    checkpointModel: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      pathOnCompute: 'string'
      uri: 'string'
    }
    checkpointRunId: 'string'
    distributed: bool
    earlyStopping: bool
    earlyStoppingDelay: int
    earlyStoppingPatience: int
    enableOnnxNormalization: bool
    evaluationFrequency: int
    gradientAccumulationStep: int
    imageSize: int
    layersToFreeze: int
    learningRate: int
    learningRateScheduler: 'string'
    logTrainingMetrics: 'string'
    logValidationLoss: 'string'
    maxSize: int
    minSize: int
    modelName: 'string'
    modelSize: 'string'
    momentum: int
    multiScale: bool
    nesterov: bool
    nmsIouThreshold: int
    numberOfEpochs: int
    numberOfWorkers: int
    optimizer: 'string'
    randomSeed: int
    stepLRGamma: int
    stepLRStepSize: int
    tileGridSize: 'string'
    tileOverlapRatio: int
    tilePredictionsNmsThreshold: int
    trainingBatchSize: int
    validationBatchSize: int
    validationIouThreshold: int
    validationMetricType: 'string'
    warmupCosineLRCycles: int
    warmupCosineLRWarmupEpochs: int
    weightDecay: int
  }
  primaryMetric: 'string'
  searchSpace: [
    {
      amsGradient: 'string'
      augmentations: 'string'
      beta1: 'string'
      beta2: 'string'
      boxDetectionsPerImage: 'string'
      boxScoreThreshold: 'string'
      distributed: 'string'
      earlyStopping: 'string'
      earlyStoppingDelay: 'string'
      earlyStoppingPatience: 'string'
      enableOnnxNormalization: 'string'
      evaluationFrequency: 'string'
      gradientAccumulationStep: 'string'
      imageSize: 'string'
      layersToFreeze: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      maxSize: 'string'
      minSize: 'string'
      modelName: 'string'
      modelSize: 'string'
      momentum: 'string'
      multiScale: 'string'
      nesterov: 'string'
      nmsIouThreshold: 'string'
      numberOfEpochs: 'string'
      numberOfWorkers: 'string'
      optimizer: 'string'
      randomSeed: 'string'
      stepLRGamma: 'string'
      stepLRStepSize: 'string'
      tileGridSize: 'string'
      tileOverlapRatio: 'string'
      tilePredictionsNmsThreshold: 'string'
      trainingBatchSize: 'string'
      validationBatchSize: 'string'
      validationIouThreshold: 'string'
      validationMetricType: 'string'
      warmupCosineLRCycles: 'string'
      warmupCosineLRWarmupEpochs: 'string'
      weightDecay: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'ImageObjectDetection'
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  validationDataSize: int
}

For Regression, use:

{
  cvSplitColumnNames: [
    'string'
  ]
  featurizationSettings: {
    blockedTransformers: [
      'string'
    ]
    columnNameAndTypes: {
      {customized property}: 'string'
    }
    datasetLanguage: 'string'
    enableDnnFeaturization: bool
    mode: 'string'
    transformerParams: {
      {customized property}: [
        {
          fields: [
            'string'
          ]
          parameters: any(Azure.Bicep.Types.Concrete.AnyType)
        }
      ]
    }
  }
  fixedParameters: {
    booster: 'string'
    boostingType: 'string'
    growPolicy: 'string'
    learningRate: int
    maxBin: int
    maxDepth: int
    maxLeaves: int
    minDataInLeaf: int
    minSplitGain: int
    modelName: 'string'
    nEstimators: int
    numLeaves: int
    preprocessorName: 'string'
    regAlpha: int
    regLambda: int
    subsample: int
    subsampleFreq: int
    treeMethod: 'string'
    withMean: bool
    withStd: bool
  }
  limitSettings: {
    enableEarlyTermination: bool
    exitScore: int
    maxConcurrentTrials: int
    maxCoresPerTrial: int
    maxNodes: int
    maxTrials: int
    sweepConcurrentTrials: int
    sweepTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  nCrossValidations: {
    mode: 'string'
    // For remaining properties, see NCrossValidations objects
  }
  primaryMetric: 'string'
  searchSpace: [
    {
      booster: 'string'
      boostingType: 'string'
      growPolicy: 'string'
      learningRate: 'string'
      maxBin: 'string'
      maxDepth: 'string'
      maxLeaves: 'string'
      minDataInLeaf: 'string'
      minSplitGain: 'string'
      modelName: 'string'
      nEstimators: 'string'
      numLeaves: 'string'
      preprocessorName: 'string'
      regAlpha: 'string'
      regLambda: 'string'
      subsample: 'string'
      subsampleFreq: 'string'
      treeMethod: 'string'
      withMean: 'string'
      withStd: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'Regression'
  testData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  testDataSize: int
  trainingSettings: {
    allowedTrainingAlgorithms: [
      'string'
    ]
    blockedTrainingAlgorithms: [
      'string'
    ]
    enableDnnTraining: bool
    enableModelExplainability: bool
    enableOnnxCompatibleModels: bool
    enableStackEnsemble: bool
    enableVoteEnsemble: bool
    ensembleModelDownloadTimeout: 'string'
    stackEnsembleSettings: {
      stackMetaLearnerKWargs: any(Azure.Bicep.Types.Concrete.AnyType)
      stackMetaLearnerTrainPercentage: int
      stackMetaLearnerType: 'string'
    }
    trainingMode: 'string'
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
  validationDataSize: int
  weightColumnName: 'string'
}

For TextClassification, use:

{
  featurizationSettings: {
    datasetLanguage: 'string'
  }
  fixedParameters: {
    gradientAccumulationSteps: int
    learningRate: int
    learningRateScheduler: 'string'
    modelName: 'string'
    numberOfEpochs: int
    trainingBatchSize: int
    validationBatchSize: int
    warmupRatio: int
    weightDecay: int
  }
  limitSettings: {
    maxConcurrentTrials: int
    maxNodes: int
    maxTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  primaryMetric: 'string'
  searchSpace: [
    {
      gradientAccumulationSteps: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      modelName: 'string'
      numberOfEpochs: 'string'
      trainingBatchSize: 'string'
      validationBatchSize: 'string'
      warmupRatio: 'string'
      weightDecay: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'TextClassification'
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
}

For TextClassificationMultilabel, use:

{
  featurizationSettings: {
    datasetLanguage: 'string'
  }
  fixedParameters: {
    gradientAccumulationSteps: int
    learningRate: int
    learningRateScheduler: 'string'
    modelName: 'string'
    numberOfEpochs: int
    trainingBatchSize: int
    validationBatchSize: int
    warmupRatio: int
    weightDecay: int
  }
  limitSettings: {
    maxConcurrentTrials: int
    maxNodes: int
    maxTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  searchSpace: [
    {
      gradientAccumulationSteps: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      modelName: 'string'
      numberOfEpochs: 'string'
      trainingBatchSize: 'string'
      validationBatchSize: 'string'
      warmupRatio: 'string'
      weightDecay: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'TextClassificationMultilabel'
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
}

For TextNER, use:

{
  featurizationSettings: {
    datasetLanguage: 'string'
  }
  fixedParameters: {
    gradientAccumulationSteps: int
    learningRate: int
    learningRateScheduler: 'string'
    modelName: 'string'
    numberOfEpochs: int
    trainingBatchSize: int
    validationBatchSize: int
    warmupRatio: int
    weightDecay: int
  }
  limitSettings: {
    maxConcurrentTrials: int
    maxNodes: int
    maxTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  searchSpace: [
    {
      gradientAccumulationSteps: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      modelName: 'string'
      numberOfEpochs: 'string'
      trainingBatchSize: 'string'
      validationBatchSize: 'string'
      warmupRatio: 'string'
      weightDecay: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  taskType: 'TextNER'
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    pathOnCompute: 'string'
    uri: 'string'
  }
}

LabelingJobMediaProperties objects

Set the mediaType property to specify the type of object.

For Image, use:

{
  annotationType: 'string'
  mediaType: 'Image'
}

For Text, use:

{
  annotationType: 'string'
  mediaType: 'Text'
}

DistributionConfiguration objects

Set the distributionType property to specify the type of object.

For Mpi, use:

{
  distributionType: 'Mpi'
  processCountPerInstance: int
}

For PyTorch, use:

{
  distributionType: 'PyTorch'
  processCountPerInstance: int
}

For Ray, use:

{
  address: 'string'
  dashboardPort: int
  distributionType: 'Ray'
  headNodeAdditionalArgs: 'string'
  includeDashboard: bool
  port: int
  workerNodeAdditionalArgs: 'string'
}

For TensorFlow, use:

{
  distributionType: 'TensorFlow'
  parameterServerCount: int
  workerCount: int
}

NCrossValidations objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode: 'Auto'
}

For Custom, use:

{
  mode: 'Custom'
  value: int
}

TargetLags objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode: 'Auto'
}

For Custom, use:

{
  mode: 'Custom'
  values: [
    int
  ]
}

MonitorComputeIdentityBase objects

Set the computeIdentityType property to specify the type of object.

For AmlToken, use:

{
  computeIdentityType: 'AmlToken'
}

For ManagedIdentity, use:

{
  computeIdentityType: 'ManagedIdentity'
  identity: {
    type: 'string'
    userAssignedIdentities: {
      {customized property}: {}
    }
  }
}

EarlyTerminationPolicy objects

Set the policyType property to specify the type of object.

For Bandit, use:

{
  policyType: 'Bandit'
  slackAmount: int
  slackFactor: int
}

For MedianStopping, use:

{
  policyType: 'MedianStopping'
}

For TruncationSelection, use:

{
  policyType: 'TruncationSelection'
  truncationPercentage: int
}

JobOutput objects

Set the jobOutputType property to specify the type of object.

For custom_model, use:

{
  assetName: 'string'
  assetVersion: 'string'
  autoDeleteSetting: {
    condition: 'string'
    value: 'string'
  }
  jobOutputType: 'custom_model'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For mlflow_model, use:

{
  assetName: 'string'
  assetVersion: 'string'
  autoDeleteSetting: {
    condition: 'string'
    value: 'string'
  }
  jobOutputType: 'mlflow_model'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For mltable, use:

{
  assetName: 'string'
  assetVersion: 'string'
  autoDeleteSetting: {
    condition: 'string'
    value: 'string'
  }
  jobOutputType: 'mltable'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For triton_model, use:

{
  assetName: 'string'
  assetVersion: 'string'
  autoDeleteSetting: {
    condition: 'string'
    value: 'string'
  }
  jobOutputType: 'triton_model'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For uri_file, use:

{
  assetName: 'string'
  assetVersion: 'string'
  autoDeleteSetting: {
    condition: 'string'
    value: 'string'
  }
  jobOutputType: 'uri_file'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For uri_folder, use:

{
  assetName: 'string'
  assetVersion: 'string'
  autoDeleteSetting: {
    condition: 'string'
    value: 'string'
  }
  jobOutputType: 'uri_folder'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

MonitoringInputDataBase objects

Set the inputDataType property to specify the type of object.

For Fixed, use:

{
  inputDataType: 'Fixed'
}

For Rolling, use:

{
  inputDataType: 'Rolling'
  preprocessingComponentId: 'string'
  windowOffset: 'string'
  windowSize: 'string'
}

For Static, use:

{
  inputDataType: 'Static'
  preprocessingComponentId: 'string'
  windowEnd: 'string'
  windowStart: 'string'
}

SparkJobEntry objects

Set the sparkJobEntryType property to specify the type of object.

For SparkJobPythonEntry, use:

{
  file: 'string'
  sparkJobEntryType: 'SparkJobPythonEntry'
}

For SparkJobScalaEntry, use:

{
  className: 'string'
  sparkJobEntryType: 'SparkJobScalaEntry'
}

Webhook objects

Set the webhookType property to specify the type of object.

For AzureDevOps, use:

{
  webhookType: 'AzureDevOps'
}

IdentityConfiguration objects

Set the identityType property to specify the type of object.

For AMLToken, use:

{
  identityType: 'AMLToken'
}

For Managed, use:

{
  clientId: 'string'
  identityType: 'Managed'
  objectId: 'string'
  resourceId: 'string'
}

For UserIdentity, use:

{
  identityType: 'UserIdentity'
}

ScheduleActionBase objects

Set the actionType property to specify the type of object.

For CreateJob, use:

{
  actionType: 'CreateJob'
  jobDefinition: {
    componentId: 'string'
    computeId: 'string'
    description: 'string'
    displayName: 'string'
    experimentName: 'string'
    identity: {
      identityType: 'string'
      // For remaining properties, see IdentityConfiguration objects
    }
    isArchived: bool
    notificationSetting: {
      emailOn: [
        'string'
      ]
      emails: [
        'string'
      ]
      webhooks: {
        {customized property}: {
          eventType: 'string'
          webhookType: 'string'
          // For remaining properties, see Webhook objects
        }
      }
    }
    properties: {
      {customized property}: 'string'
    }
    secretsConfiguration: {
      {customized property}: {
        uri: 'string'
        workspaceSecretName: 'string'
      }
    }
    services: {
      {customized property}: {
        endpoint: 'string'
        jobServiceType: 'string'
        nodes: {
          nodesValueType: 'string'
          // For remaining properties, see Nodes objects
        }
        port: int
        properties: {
          {customized property}: 'string'
        }
      }
    }
    tags: {
      {customized property}: 'string'
    }
    jobType: 'string'
    // For remaining properties, see JobBaseProperties objects
  }
}

For CreateMonitor, use:

{
  actionType: 'CreateMonitor'
  monitorDefinition: {
    alertNotificationSettings: {
      emailNotificationSettings: {
        emails: [
          'string'
        ]
      }
    }
    computeConfiguration: {
      computeType: 'string'
      // For remaining properties, see MonitorComputeConfigurationBase objects
    }
    monitoringTarget: {
      deploymentId: 'string'
      modelId: 'string'
      taskType: 'string'
    }
    signals: {
      {customized property}: {
        notificationTypes: [
          'string'
        ]
        properties: {
          {customized property}: 'string'
        }
        signalType: 'string'
        // For remaining properties, see MonitoringSignalBase objects
      }
    }
  }
}

For ImportData, use:

{
  actionType: 'ImportData'
  dataImportDefinition: {
    assetName: 'string'
    autoDeleteSetting: {
      condition: 'string'
      value: 'string'
    }
    dataType: 'string'
    dataUri: 'string'
    description: 'string'
    intellectualProperty: {
      protectionLevel: 'string'
      publisher: 'string'
    }
    isAnonymous: bool
    isArchived: bool
    properties: {
      {customized property}: 'string'
    }
    source: {
      connection: 'string'
      sourceType: 'string'
      // For remaining properties, see DataImportSource objects
    }
    stage: 'string'
    tags: {
      {customized property}: 'string'
    }
  }
}

For InvokeBatchEndpoint, use:

{
  actionType: 'InvokeBatchEndpoint'
  endpointInvocationDefinition: any(Azure.Bicep.Types.Concrete.AnyType)
}

ModelPerformanceMetricThresholdBase objects

Set the modelType property to specify the type of object.

For Classification, use:

{
  metric: 'string'
  modelType: 'Classification'
}

For Regression, use:

{
  metric: 'string'
  modelType: 'Regression'
}

DataQualityMetricThresholdBase objects

Set the dataType property to specify the type of object.

For Categorical, use:

{
  dataType: 'Categorical'
  metric: 'string'
}

For Numerical, use:

{
  dataType: 'Numerical'
  metric: 'string'
}

SamplingAlgorithm objects

Set the samplingAlgorithmType property to specify the type of object.

For Bayesian, use:

{
  samplingAlgorithmType: 'Bayesian'
}

For Grid, use:

{
  samplingAlgorithmType: 'Grid'
}

For Random, use:

{
  logbase: 'string'
  rule: 'string'
  samplingAlgorithmType: 'Random'
  seed: int
}

FineTuningVertical objects

Set the modelProvider property to specify the type of object.

For AzureOpenAI, use:

{
  hyperParameters: {
    batchSize: int
    learningRateMultiplier: int
    nEpochs: int
  }
  modelProvider: 'AzureOpenAI'
}

For Custom, use:

{
  hyperParameters: {
    {customized property}: 'string'
  }
  modelProvider: 'Custom'
}

MonitoringSignalBase objects

Set the signalType property to specify the type of object.

For Custom, use:

{
  componentId: 'string'
  inputAssets: {
    {customized property}: {
      columns: {
        {customized property}: 'string'
      }
      dataContext: 'string'
      jobInputType: 'string'
      uri: 'string'
      inputDataType: 'string'
      // For remaining properties, see MonitoringInputDataBase objects
    }
  }
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  metricThresholds: [
    {
      metric: 'string'
      threshold: {
        value: int
      }
    }
  ]
  signalType: 'Custom'
  workspaceConnection: {
    environmentVariables: {
      {customized property}: 'string'
    }
    secrets: {
      {customized property}: 'string'
    }
  }
}

For DataDrift, use:

{
  dataSegment: {
    feature: 'string'
    values: [
      'string'
    ]
  }
  featureDataTypeOverride: {
    {customized property}: 'string'
  }
  featureImportanceSettings: {
    mode: 'string'
    targetColumn: 'string'
  }
  features: {
    filterType: 'string'
    // For remaining properties, see MonitoringFeatureFilterBase objects
  }
  metricThresholds: [
    {
      threshold: {
        value: int
      }
      dataType: 'string'
      // For remaining properties, see DataDriftMetricThresholdBase objects
    }
  ]
  productionData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType: 'DataDrift'
}

For DataQuality, use:

{
  featureDataTypeOverride: {
    {customized property}: 'string'
  }
  featureImportanceSettings: {
    mode: 'string'
    targetColumn: 'string'
  }
  features: {
    filterType: 'string'
    // For remaining properties, see MonitoringFeatureFilterBase objects
  }
  metricThresholds: [
    {
      threshold: {
        value: int
      }
      dataType: 'string'
      // For remaining properties, see DataQualityMetricThresholdBase objects
    }
  ]
  productionData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType: 'DataQuality'
}

For FeatureAttributionDrift, use:

{
  featureDataTypeOverride: {
    {customized property}: 'string'
  }
  featureImportanceSettings: {
    mode: 'string'
    targetColumn: 'string'
  }
  metricThreshold: {
    metric: 'string'
    threshold: {
      value: int
    }
  }
  productionData: [
    {
      columns: {
        {customized property}: 'string'
      }
      dataContext: 'string'
      jobInputType: 'string'
      uri: 'string'
      inputDataType: 'string'
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  referenceData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType: 'FeatureAttributionDrift'
}

For GenerationSafetyQuality, use:

{
  metricThresholds: [
    {
      metric: 'string'
      threshold: {
        value: int
      }
    }
  ]
  productionData: [
    {
      columns: {
        {customized property}: 'string'
      }
      dataContext: 'string'
      jobInputType: 'string'
      uri: 'string'
      inputDataType: 'string'
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  samplingRate: int
  signalType: 'GenerationSafetyQuality'
  workspaceConnectionId: 'string'
}

For GenerationTokenStatistics, use:

{
  metricThresholds: [
    {
      metric: 'string'
      threshold: {
        value: int
      }
    }
  ]
  productionData: [
    {
      columns: {
        {customized property}: 'string'
      }
      dataContext: 'string'
      jobInputType: 'string'
      uri: 'string'
      inputDataType: 'string'
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  samplingRate: int
  signalType: 'GenerationTokenStatistics'
}

For ModelPerformance, use:

{
  dataSegment: {
    feature: 'string'
    values: [
      'string'
    ]
  }
  metricThreshold: {
    threshold: {
      value: int
    }
    modelType: 'string'
    // For remaining properties, see ModelPerformanceMetricThresholdBase objects
  }
  productionData: [
    {
      columns: {
        {customized property}: 'string'
      }
      dataContext: 'string'
      jobInputType: 'string'
      uri: 'string'
      inputDataType: 'string'
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  referenceData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType: 'ModelPerformance'
}

For PredictionDrift, use:

{
  featureDataTypeOverride: {
    {customized property}: 'string'
  }
  metricThresholds: [
    {
      threshold: {
        value: int
      }
      dataType: 'string'
      // For remaining properties, see PredictionDriftMetricThresholdBase objects
    }
  ]
  productionData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType: 'PredictionDrift'
}

DataDriftMetricThresholdBase objects

Set the dataType property to specify the type of object.

For Categorical, use:

{
  dataType: 'Categorical'
  metric: 'string'
}

For Numerical, use:

{
  dataType: 'Numerical'
  metric: 'string'
}

JobInput objects

Set the jobInputType property to specify the type of object.

For custom_model, use:

{
  jobInputType: 'custom_model'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For literal, use:

{
  jobInputType: 'literal'
  value: 'string'
}

For mlflow_model, use:

{
  jobInputType: 'mlflow_model'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For mltable, use:

{
  jobInputType: 'mltable'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For triton_model, use:

{
  jobInputType: 'triton_model'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For uri_file, use:

{
  jobInputType: 'uri_file'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

For uri_folder, use:

{
  jobInputType: 'uri_folder'
  mode: 'string'
  pathOnCompute: 'string'
  uri: 'string'
}

Seasonality objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode: 'Auto'
}

For Custom, use:

{
  mode: 'Custom'
  value: int
}

TargetRollingWindowSize objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode: 'Auto'
}

For Custom, use:

{
  mode: 'Custom'
  value: int
}

MonitorComputeConfigurationBase objects

Set the computeType property to specify the type of object.

For ServerlessSpark, use:

{
  computeIdentity: {
    computeIdentityType: 'string'
    // For remaining properties, see MonitorComputeIdentityBase objects
  }
  computeType: 'ServerlessSpark'
  instanceType: 'string'
  runtimeVersion: 'string'
}

DataImportSource objects

Set the sourceType property to specify the type of object.

For database, use:

{
  query: 'string'
  sourceType: 'database'
  storedProcedure: 'string'
  storedProcedureParams: [
    {
      {customized property}: 'string'
    }
  ]
  tableName: 'string'
}

For file_system, use:

{
  path: 'string'
  sourceType: 'file_system'
}

MonitoringFeatureFilterBase objects

Set the filterType property to specify the type of object.

For AllFeatures, use:

{
  filterType: 'AllFeatures'
}

For FeatureSubset, use:

{
  features: [
    'string'
  ]
  filterType: 'FeatureSubset'
}

For TopNByAttribution, use:

{
  filterType: 'TopNByAttribution'
  top: int
}

PredictionDriftMetricThresholdBase objects

Set the dataType property to specify the type of object.

For Categorical, use:

{
  dataType: 'Categorical'
  metric: 'string'
}

For Numerical, use:

{
  dataType: 'Numerical'
  metric: 'string'
}

TriggerBase objects

Set the triggerType property to specify the type of object.

For Cron, use:

{
  expression: 'string'
  triggerType: 'Cron'
}

For Recurrence, use:

{
  frequency: 'string'
  interval: int
  schedule: {
    hours: [
      int
    ]
    minutes: [
      int
    ]
    monthDays: [
      int
    ]
    weekDays: [
      'string'
    ]
  }
  triggerType: 'Recurrence'
}

ForecastHorizon objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode: 'Auto'
}

For Custom, use:

{
  mode: 'Custom'
  value: int
}

Nodes objects

Set the nodesValueType property to specify the type of object.

For All, use:

{
  nodesValueType: 'All'
}

Property values

AllFeatures

Name Description Value
filterType [Required] Specifies the feature filter to leverage when selecting features to calculate metrics over. 'AllFeatures' (required)

AllNodes

Name Description Value
nodesValueType [Required] Type of the Nodes value 'All' (required)

AmlToken

Name Description Value
identityType [Required] Specifies the type of identity framework. 'AMLToken' (required)

AmlTokenComputeIdentity

Name Description Value
computeIdentityType [Required] Monitor compute identity type enum. 'AmlToken' (required)

AutoDeleteSetting

Name Description Value
condition When to check if an asset is expired 'CreatedGreaterThan'
'LastAccessedGreaterThan'
value Expiration condition value. string

AutoForecastHorizon

Name Description Value
mode [Required] Set forecast horizon value selection mode. 'Auto' (required)

AutologgerSettings

Name Description Value
mlflowAutologger [Required] Indicates whether mlflow autologger is enabled. 'Disabled'
'Enabled' (required)

AutoMLJob

Name Description Value
environmentId The ARM resource ID of the Environment specification for the job.
This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job.
string
environmentVariables Environment variables included in the job. AutoMLJobEnvironmentVariables
jobType [Required] Specifies the type of job. 'AutoML' (required)
outputs Mapping of output data bindings used in the job. AutoMLJobOutputs
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. JobResourceConfiguration
taskDetails [Required] This represents scenario which can be one of Tables/NLP/Image AutoMLVertical (required)

AutoMLJobEnvironmentVariables

Name Description Value

AutoMLJobOutputs

Name Description Value

AutoMLVertical

Name Description Value
logVerbosity Log verbosity for the job. 'Critical'
'Debug'
'Error'
'Info'
'NotSet'
'Warning'
targetColumnName Target column name: This is prediction values column.
Also known as label column name in context of classification tasks.
string
taskType Set to 'Classification' for type Classification. Set to 'Forecasting' for type Forecasting. Set to 'ImageClassification' for type ImageClassification. Set to 'ImageClassificationMultilabel' for type ImageClassificationMultilabel. Set to 'ImageInstanceSegmentation' for type ImageInstanceSegmentation. Set to 'ImageObjectDetection' for type ImageObjectDetection. Set to 'Regression' for type Regression. Set to 'TextClassification' for type TextClassification. Set to 'TextClassificationMultilabel' for type TextClassificationMultilabel. Set to 'TextNER' for type TextNer. 'Classification'
'Forecasting'
'ImageClassification'
'ImageClassificationMultilabel'
'ImageInstanceSegmentation'
'ImageObjectDetection'
'Regression'
'TextClassification'
'TextClassificationMultilabel'
'TextNER' (required)
trainingData [Required] Training data input. MLTableJobInput (required)

AutoNCrossValidations

Name Description Value
mode [Required] Mode for determining N-Cross validations. 'Auto' (required)

AutoSeasonality

Name Description Value
mode [Required] Seasonality mode. 'Auto' (required)

AutoTargetLags

Name Description Value
mode [Required] Set target lags mode - Auto/Custom 'Auto' (required)

AutoTargetRollingWindowSize

Name Description Value
mode [Required] TargetRollingWindowSiz detection mode. 'Auto' (required)

AzureDevOpsWebhook

Name Description Value
webhookType [Required] Specifies the type of service to send a callback 'AzureDevOps' (required)

AzureOpenAiFineTuning

Name Description Value
hyperParameters HyperParameters for fine tuning Azure Open AI model. AzureOpenAiHyperParameters
modelProvider [Required] Enum to determine the type of fine tuning. 'AzureOpenAI' (required)

AzureOpenAiHyperParameters

Name Description Value
batchSize Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance. int
learningRateMultiplier Scaling factor for the learning rate. A smaller learning rate may be useful to avoid over fitting. int
nEpochs The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset. int

BanditPolicy

Name Description Value
policyType [Required] Name of policy configuration 'Bandit' (required)
slackAmount Absolute distance allowed from the best performing run. int
slackFactor Ratio of the allowed distance from the best performing run. int

BayesianSamplingAlgorithm

Name Description Value
samplingAlgorithmType [Required] The algorithm used for generating hyperparameter values, along with configuration properties 'Bayesian' (required)

CategoricalDataDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Categorical' (required)
metric [Required] The categorical data drift metric to calculate. 'JensenShannonDistance'
'PearsonsChiSquaredTest'
'PopulationStabilityIndex' (required)

CategoricalDataQualityMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Categorical' (required)
metric [Required] The categorical data quality metric to calculate. 'DataTypeErrorRate'
'NullValueRate'
'OutOfBoundsRate' (required)

CategoricalPredictionDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Categorical' (required)
metric [Required] The categorical prediction drift metric to calculate. 'JensenShannonDistance'
'PearsonsChiSquaredTest'
'PopulationStabilityIndex' (required)

Classification

Name Description Value
cvSplitColumnNames Columns to use for CVSplit data. string[]
featurizationSettings Featurization inputs needed for AutoML job. TableVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. TableFixedParameters
limitSettings Execution constraints for AutoMLJob. TableVerticalLimitSettings
nCrossValidations Number of cross validation folds to be applied on training dataset
when validation dataset is not provided.
NCrossValidations
positiveLabel Positive label for binary metrics calculation. string
primaryMetric Primary metric for the task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. TableParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. TableSweepSettings
taskType [Required] Task type for AutoMLJob. 'Classification' (required)
testData Test data input. MLTableJobInput
testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
trainingSettings Inputs for training phase for an AutoML Job. ClassificationTrainingSettings
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. string

ClassificationModelPerformanceMetricThreshold

Name Description Value
metric [Required] The classification model performance to calculate. 'Accuracy'
'Precision'
'Recall' (required)
modelType [Required] Specifies the data type of the metric threshold. 'Classification' (required)

ClassificationTrainingSettings

Name Description Value
allowedTrainingAlgorithms Allowed models for classification task. String array containing any of:
'BernoulliNaiveBayes'
'DecisionTree'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LightGBM'
'LinearSVM'
'LogisticRegression'
'MultinomialNaiveBayes'
'RandomForest'
'SGD'
'SVM'
'XGBoostClassifier'
blockedTrainingAlgorithms Blocked models for classification task. String array containing any of:
'BernoulliNaiveBayes'
'DecisionTree'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LightGBM'
'LinearSVM'
'LogisticRegression'
'MultinomialNaiveBayes'
'RandomForest'
'SGD'
'SVM'
'XGBoostClassifier'
enableDnnTraining Enable recommendation of DNN models. bool
enableModelExplainability Flag to turn on explainability on best model. bool
enableOnnxCompatibleModels Flag for enabling onnx compatible models. bool
enableStackEnsemble Enable stack ensemble run. bool
enableVoteEnsemble Enable voting ensemble run. bool
ensembleModelDownloadTimeout During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
Configure this parameter with a higher value than 300 secs, if more time is needed.
string
stackEnsembleSettings Stack ensemble settings for stack ensemble run. StackEnsembleSettings
trainingMode TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'.
If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen.
If 'NonDistributed' then only non distributed algorithms are chosen.
'Auto'
'Distributed'
'NonDistributed'

ColumnTransformer

Name Description Value
fields Fields to apply transformer logic on. string[]
parameters Different properties to be passed to transformer.
Input expected is dictionary of key,value pairs in JSON format.
any

CommandJob

Name Description Value
autologgerSettings Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. AutologgerSettings
codeId ARM resource ID of the code asset. string
command [Required] The command to execute on startup of the job. eg. "python train.py" string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
distribution Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, Ray, or null. DistributionConfiguration
environmentId [Required] The ARM resource ID of the Environment specification for the job. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
environmentVariables Environment variables included in the job. CommandJobEnvironmentVariables
inputs Mapping of input data bindings used in the job. CommandJobInputs
jobType [Required] Specifies the type of job. 'Command' (required)
limits Command Job limit. CommandJobLimits
outputs Mapping of output data bindings used in the job. CommandJobOutputs
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. JobResourceConfiguration

CommandJobEnvironmentVariables

Name Description Value

CommandJobInputs

Name Description Value

CommandJobLimits

Name Description Value
jobLimitsType [Required] JobLimit type. 'Command'
'Sweep' (required)
timeout The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. string

CommandJobOutputs

Name Description Value

ComponentConfiguration

Name Description Value
pipelineSettings Pipeline settings, for things like ContinueRunOnStepFailure etc. any

CreateMonitorAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'CreateMonitor' (required)
monitorDefinition [Required] Defines the monitor. MonitorDefinition (required)

CronTrigger

Name Description Value
expression [Required] Specifies cron expression of schedule.
The expression should follow NCronTab format.
string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
triggerType [Required] 'Cron' (required)

CustomForecastHorizon

Name Description Value
mode [Required] Set forecast horizon value selection mode. 'Custom' (required)
value [Required] Forecast horizon value. int (required)

CustomMetricThreshold

Name Description Value
metric [Required] The user-defined metric to calculate. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

CustomModelFineTuning

Name Description Value
hyperParameters HyperParameters for fine tuning custom model. CustomModelFineTuningHyperParameters
modelProvider [Required] Enum to determine the type of fine tuning. 'Custom' (required)

CustomModelFineTuningHyperParameters

Name Description Value

CustomModelJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'custom_model' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

CustomModelJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'custom_model' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

CustomMonitoringSignal

Name Description Value
componentId [Required] ARM resource ID of the component resource used to calculate the custom metrics. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
inputAssets Monitoring assets to take as input. Key is the component input port name, value is the data asset. CustomMonitoringSignalInputAssets
inputs Extra component parameters to take as input. Key is the component literal input port name, value is the parameter value. CustomMonitoringSignalInputs
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. CustomMetricThreshold[] (required)
signalType [Required] Specifies the type of signal to monitor. 'Custom' (required)
workspaceConnection A list of metrics to calculate and their associated thresholds. MonitoringWorkspaceConnection

CustomMonitoringSignalInputAssets

Name Description Value

CustomMonitoringSignalInputs

Name Description Value

CustomNCrossValidations

Name Description Value
mode [Required] Mode for determining N-Cross validations. 'Custom' (required)
value [Required] N-Cross validations value. int (required)

CustomSeasonality

Name Description Value
mode [Required] Seasonality mode. 'Custom' (required)
value [Required] Seasonality value. int (required)

CustomTargetLags

Name Description Value
mode [Required] Set target lags mode - Auto/Custom 'Custom' (required)
values [Required] Set target lags values. int[] (required)

CustomTargetRollingWindowSize

Name Description Value
mode [Required] TargetRollingWindowSiz detection mode. 'Custom' (required)
value [Required] TargetRollingWindowSize value. int (required)

DatabaseSource

Name Description Value
query SQL Query statement for data import Database source string
sourceType [Required] Specifies the type of data. 'database' (required)
storedProcedure SQL StoredProcedure on data import Database source string
storedProcedureParams SQL StoredProcedure parameters DatabaseSourceStoredProcedureParamsItem[]
tableName Name of the table on data import Database source string

DatabaseSourceStoredProcedureParamsItem

Name Description Value

DataDriftMetricThresholdBase

Name Description Value
dataType Set to 'Categorical' for type CategoricalDataDriftMetricThreshold. Set to 'Numerical' for type NumericalDataDriftMetricThreshold. 'Categorical'
'Numerical' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

DataDriftMonitoringSignal

Name Description Value
dataSegment The data segment used for scoping on a subset of the data population. MonitoringDataSegment
featureDataTypeOverride A dictionary that maps feature names to their respective data types. DataDriftMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings The settings for computing feature importance. FeatureImportanceSettings
features The feature filter which identifies which feature to calculate drift over. MonitoringFeatureFilterBase
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. DataDriftMetricThresholdBase[] (required)
productionData [Required] The data which drift will be calculated for. MonitoringInputDataBase (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'DataDrift' (required)

DataDriftMonitoringSignalFeatureDataTypeOverride

Name Description Value

DataImport

Name Description Value
assetName Name of the asset for data import job to create string
autoDeleteSetting Specifies the lifecycle setting of managed data asset. AutoDeleteSetting
dataType [Required] Specifies the type of data. 'mltable'
'uri_file'
'uri_folder' (required)
dataUri [Required] Uri of the data. Example: https://go.microsoft.com/fwlink/?linkid=2202330 string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
description The asset description text. string
intellectualProperty Intellectual Property details. Used if data is an Intellectual Property. IntellectualProperty
isAnonymous If the name version are system generated (anonymous registration). For types where Stage is defined, when Stage is provided it will be used to populate IsAnonymous bool
isArchived Is the asset archived? For types where Stage is defined, when Stage is provided it will be used to populate IsArchived bool
properties The asset property dictionary. ResourceBaseProperties
source Source data of the asset to import from DataImportSource
stage Stage in the data lifecycle assigned to this data asset string
tags Tag dictionary. Tags can be added, removed, and updated. ResourceBaseTags

DataImportSource

Name Description Value
connection Workspace connection for data import source storage string
sourceType Set to 'database' for type DatabaseSource. Set to 'file_system' for type FileSystemSource. 'database'
'file_system' (required)

DataQualityMetricThresholdBase

Name Description Value
dataType Set to 'Categorical' for type CategoricalDataQualityMetricThreshold. Set to 'Numerical' for type NumericalDataQualityMetricThreshold. 'Categorical'
'Numerical' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

DataQualityMonitoringSignal

Name Description Value
featureDataTypeOverride A dictionary that maps feature names to their respective data types. DataQualityMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings The settings for computing feature importance. FeatureImportanceSettings
features The features to calculate drift over. MonitoringFeatureFilterBase
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. DataQualityMetricThresholdBase[] (required)
productionData [Required] The data produced by the production service which drift will be calculated for. MonitoringInputDataBase (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'DataQuality' (required)

DataQualityMonitoringSignalFeatureDataTypeOverride

Name Description Value

DistributionConfiguration

Name Description Value
distributionType Set to 'Mpi' for type Mpi. Set to 'PyTorch' for type PyTorch. Set to 'Ray' for type Ray. Set to 'TensorFlow' for type TensorFlow. 'Mpi'
'PyTorch'
'Ray'
'TensorFlow' (required)

EarlyTerminationPolicy

Name Description Value
delayEvaluation Number of intervals by which to delay the first evaluation. int
evaluationInterval Interval (number of runs) between policy evaluations. int
policyType Set to 'Bandit' for type BanditPolicy. Set to 'MedianStopping' for type MedianStoppingPolicy. Set to 'TruncationSelection' for type TruncationSelectionPolicy. 'Bandit'
'MedianStopping'
'TruncationSelection' (required)

EndpointScheduleAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'InvokeBatchEndpoint' (required)
endpointInvocationDefinition [Required] Defines Schedule action definition details.
<see href="TBD" />
any (required)

FeatureAttributionDriftMonitoringSignal

Name Description Value
featureDataTypeOverride A dictionary that maps feature names to their respective data types. FeatureAttributionDriftMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings [Required] The settings for computing feature importance. FeatureImportanceSettings (required)
metricThreshold [Required] A list of metrics to calculate and their associated thresholds. FeatureAttributionMetricThreshold (required)
productionData [Required] The data which drift will be calculated for. MonitoringInputDataBase[] (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'FeatureAttributionDrift' (required)

FeatureAttributionDriftMonitoringSignalFeatureDataTypeOverride

Name Description Value

FeatureAttributionMetricThreshold

Name Description Value
metric [Required] The feature attribution metric to calculate. 'NormalizedDiscountedCumulativeGain' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

FeatureImportanceSettings

Name Description Value
mode The mode of operation for computing feature importance. 'Disabled'
'Enabled'
targetColumn The name of the target column within the input data asset. string

FeatureSubset

Name Description Value
features [Required] The list of features to include. string[] (required)
filterType [Required] Specifies the feature filter to leverage when selecting features to calculate metrics over. 'FeatureSubset' (required)

FileSystemSource

Name Description Value
path Path on data import FileSystem source string
sourceType [Required] Specifies the type of data. 'file_system' (required)

FineTuningJob

Name Description Value
fineTuningDetails [Required] FineTuningVertical (required)
jobType [Required] Specifies the type of job. 'FineTuning' (required)
outputs [Required] FineTuningJobOutputs (required)

FineTuningJobOutputs

Name Description Value

FineTuningVertical

Name Description Value
model [Required] Input model for fine tuning. MLFlowModelJobInput (required)
modelProvider Set to 'AzureOpenAI' for type AzureOpenAiFineTuning. Set to 'Custom' for type CustomModelFineTuning. 'AzureOpenAI'
'Custom' (required)
taskType [Required] Fine tuning task type. 'ChatCompletion'
'ImageClassification'
'ImageInstanceSegmentation'
'ImageObjectDetection'
'QuestionAnswering'
'TextClassification'
'TextCompletion'
'TextSummarization'
'TextTranslation'
'TokenClassification'
'VideoMultiObjectTracking' (required)
trainingData [Required] Training data for fine tuning. JobInput (required)
validationData Validation data for fine tuning. JobInput

FixedInputData

Name Description Value
inputDataType [Required] Specifies the type of signal to monitor. 'Fixed' (required)

ForecastHorizon

Name Description Value
mode Set to 'Auto' for type AutoForecastHorizon. Set to 'Custom' for type CustomForecastHorizon. 'Auto'
'Custom' (required)

Forecasting

Name Description Value
cvSplitColumnNames Columns to use for CVSplit data. string[]
featurizationSettings Featurization inputs needed for AutoML job. TableVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. TableFixedParameters
forecastingSettings Forecasting task specific inputs. ForecastingSettings
limitSettings Execution constraints for AutoMLJob. TableVerticalLimitSettings
nCrossValidations Number of cross validation folds to be applied on training dataset
when validation dataset is not provided.
NCrossValidations
primaryMetric Primary metric for forecasting task. 'NormalizedMeanAbsoluteError'
'NormalizedRootMeanSquaredError'
'R2Score'
'SpearmanCorrelation'
searchSpace Search space for sampling different combinations of models and their hyperparameters. TableParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. TableSweepSettings
taskType [Required] Task type for AutoMLJob. 'Forecasting' (required)
testData Test data input. MLTableJobInput
testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
trainingSettings Inputs for training phase for an AutoML Job. ForecastingTrainingSettings
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. string

ForecastingSettings

Name Description Value
countryOrRegionForHolidays Country or region for holidays for forecasting tasks.
These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.
string
cvStepSize Number of periods between the origin time of one CV fold and the next fold. For
example, if CVStepSize = 3 for daily data, the origin time for each fold will be
three days apart.
int
featureLags Flag for generating lags for the numeric features with 'auto' or null. 'Auto'
'None'
featuresUnknownAtForecastTime The feature columns that are available for training but unknown at the time of forecast/inference.
If features_unknown_at_forecast_time is not set, it is assumed that all the feature columns in the dataset are known at inference time.
string[]
forecastHorizon The desired maximum forecast horizon in units of time-series frequency. ForecastHorizon
frequency When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. string
seasonality Set time series seasonality as an integer multiple of the series frequency.
If seasonality is set to 'auto', it will be inferred.
Seasonality
shortSeriesHandlingConfig The parameter defining how if AutoML should handle short time series. 'Auto'
'Drop'
'None'
'Pad'
targetAggregateFunction The function to be used to aggregate the time series target column to conform to a user specified frequency.
If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".
'Max'
'Mean'
'Min'
'None'
'Sum'
targetLags The number of past periods to lag from the target column. TargetLags
targetRollingWindowSize The number of past periods used to create a rolling window average of the target column. TargetRollingWindowSize
timeColumnName The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. string
timeSeriesIdColumnNames The names of columns used to group a timeseries. It can be used to create multiple series.
If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting.
string[]
useStl Configure STL Decomposition of the time-series target column. 'None'
'Season'
'SeasonTrend'

ForecastingTrainingSettings

Name Description Value
allowedTrainingAlgorithms Allowed models for forecasting task. String array containing any of:
'Arimax'
'AutoArima'
'Average'
'DecisionTree'
'ElasticNet'
'ExponentialSmoothing'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'Naive'
'Prophet'
'RandomForest'
'SeasonalAverage'
'SeasonalNaive'
'SGD'
'TCNForecaster'
'XGBoostRegressor'
blockedTrainingAlgorithms Blocked models for forecasting task. String array containing any of:
'Arimax'
'AutoArima'
'Average'
'DecisionTree'
'ElasticNet'
'ExponentialSmoothing'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'Naive'
'Prophet'
'RandomForest'
'SeasonalAverage'
'SeasonalNaive'
'SGD'
'TCNForecaster'
'XGBoostRegressor'
enableDnnTraining Enable recommendation of DNN models. bool
enableModelExplainability Flag to turn on explainability on best model. bool
enableOnnxCompatibleModels Flag for enabling onnx compatible models. bool
enableStackEnsemble Enable stack ensemble run. bool
enableVoteEnsemble Enable voting ensemble run. bool
ensembleModelDownloadTimeout During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
Configure this parameter with a higher value than 300 secs, if more time is needed.
string
stackEnsembleSettings Stack ensemble settings for stack ensemble run. StackEnsembleSettings
trainingMode TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'.
If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen.
If 'NonDistributed' then only non distributed algorithms are chosen.
'Auto'
'Distributed'
'NonDistributed'

GenerationSafetyQualityMetricThreshold

Name Description Value
metric [Required] Gets or sets the feature attribution metric to calculate. 'AcceptableCoherenceScorePerInstance'
'AcceptableFluencyScorePerInstance'
'AcceptableGroundednessScorePerInstance'
'AcceptableRelevanceScorePerInstance'
'AcceptableSimilarityScorePerInstance'
'AggregatedCoherencePassRate'
'AggregatedFluencyPassRate'
'AggregatedGroundednessPassRate'
'AggregatedRelevancePassRate'
'AggregatedSimilarityPassRate' (required)
threshold Gets or sets the threshold value.
If null, a default value will be set depending on the selected metric.
MonitoringThreshold

GenerationSafetyQualityMonitoringSignal

Name Description Value
metricThresholds [Required] Gets or sets the metrics to calculate and the corresponding thresholds. GenerationSafetyQualityMetricThreshold[] (required)
productionData Gets or sets the production data for computing metrics. MonitoringInputDataBase[]
samplingRate [Required] The sample rate of the production data, should be greater than 0 and at most 1. int (required)
signalType [Required] Specifies the type of signal to monitor. 'GenerationSafetyQuality' (required)
workspaceConnectionId Gets or sets the workspace connection ID used to connect to the content generation endpoint. string

GenerationTokenUsageMetricThreshold

Name Description Value
metric [Required] Gets or sets the feature attribution metric to calculate. 'TotalTokenCount'
'TotalTokenCountPerGroup' (required)
threshold Gets or sets the threshold value.
If null, a default value will be set depending on the selected metric.
MonitoringThreshold

GenerationTokenUsageSignal

Name Description Value
metricThresholds [Required] Gets or sets the metrics to calculate and the corresponding thresholds. GenerationTokenUsageMetricThreshold[] (required)
productionData Gets or sets the production data for computing metrics. MonitoringInputDataBase[]
samplingRate [Required] The sample rate of the production data, should be greater than 0 and at most 1. int (required)
signalType [Required] Specifies the type of signal to monitor. 'GenerationTokenStatistics' (required)

GridSamplingAlgorithm

Name Description Value
samplingAlgorithmType [Required] The algorithm used for generating hyperparameter values, along with configuration properties 'Grid' (required)

IdentityConfiguration

Name Description Value
identityType Set to 'AMLToken' for type AmlToken. Set to 'Managed' for type ManagedIdentity. Set to 'UserIdentity' for type UserIdentity. 'AMLToken'
'Managed'
'UserIdentity' (required)

ImageClassification

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsClassification
primaryMetric Primary metric to optimize for this task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsClassification[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageClassification' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageClassificationMultilabel

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsClassification
primaryMetric Primary metric to optimize for this task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'IOU'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsClassification[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageClassificationMultilabel' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageInstanceSegmentation

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsObjectDetection
primaryMetric Primary metric to optimize for this task. 'MeanAveragePrecision'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageInstanceSegmentation' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageLimitSettings

Name Description Value
maxConcurrentTrials Maximum number of concurrent AutoML iterations. int
maxTrials Maximum number of AutoML iterations. int
timeout AutoML job timeout. string

ImageModelDistributionSettingsClassification

Name Description Value
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. string
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
distributed Whether to use distributer training. string
earlyStopping Enable early stopping logic during training. string
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
string
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
string
enableOnnxNormalization Enable normalization when exporting ONNX model. string
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. string
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
string
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
string
learningRate Initial learning rate. Must be a float in the range [0, 1]. string
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. string
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. string
nesterov Enable nesterov when optimizer is 'sgd'. string
numberOfEpochs Number of training epochs. Must be a positive integer. string
numberOfWorkers Number of data loader workers. Must be a non-negative integer. string
optimizer Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. string
randomSeed Random seed to be used when using deterministic training. string
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. string
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. string
trainingBatchSize Training batch size. Must be a positive integer. string
trainingCropSize Image crop size that is input to the neural network for the training dataset. Must be a positive integer. string
validationBatchSize Validation batch size. Must be a positive integer. string
validationCropSize Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. string
validationResizeSize Image size to which to resize before cropping for validation dataset. Must be a positive integer. string
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. string
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. string
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. string
weightedLoss Weighted loss. The accepted values are 0 for no weighted loss.
1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
string

ImageModelDistributionSettingsObjectDetection

Name Description Value
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. string
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
boxDetectionsPerImage Maximum number of detections per image, for all classes. Must be a positive integer.
Note: This settings is not supported for the 'yolov5' algorithm.
string
boxScoreThreshold During inference, only return proposals with a classification score greater than
BoxScoreThreshold. Must be a float in the range[0, 1].
string
distributed Whether to use distributer training. string
earlyStopping Enable early stopping logic during training. string
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
string
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
string
enableOnnxNormalization Enable normalization when exporting ONNX model. string
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. string
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
string
imageSize Image size for train and validation. Must be a positive integer.
Note: The training run may get into CUDA OOM if the size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
string
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
string
learningRate Initial learning rate. Must be a float in the range [0, 1]. string
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. string
maxSize Maximum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
string
minSize Minimum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
string
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
modelSize Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
Note: training run may get into CUDA OOM if the model size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
string
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. string
multiScale Enable multi-scale image by varying image size by +/- 50%.
Note: training run may get into CUDA OOM if no sufficient GPU memory.
Note: This settings is only supported for the 'yolov5' algorithm.
string
nesterov Enable nesterov when optimizer is 'sgd'. string
nmsIouThreshold IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. string
numberOfEpochs Number of training epochs. Must be a positive integer. string
numberOfWorkers Number of data loader workers. Must be a non-negative integer. string
optimizer Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. string
randomSeed Random seed to be used when using deterministic training. string
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. string
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. string
tileGridSize The grid size to use for tiling each image. Note: TileGridSize must not be
None to enable small object detection logic. A string containing two integers in mxn format.
Note: This settings is not supported for the 'yolov5' algorithm.
string
tileOverlapRatio Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
Note: This settings is not supported for the 'yolov5' algorithm.
string
tilePredictionsNmsThreshold The IOU threshold to use to perform NMS while merging predictions from tiles and image.
Used in validation/ inference. Must be float in the range [0, 1].
Note: This settings is not supported for the 'yolov5' algorithm.
NMS: Non-maximum suppression
string
trainingBatchSize Training batch size. Must be a positive integer. string
validationBatchSize Validation batch size. Must be a positive integer. string
validationIouThreshold IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. string
validationMetricType Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. string
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. string
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. string
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. string

ImageModelSettingsClassification

Name Description Value
advancedSettings Settings for advanced scenarios. string
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. bool
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
checkpointFrequency Frequency to store model checkpoints. Must be a positive integer. int
checkpointModel The pretrained checkpoint model for incremental training. MLFlowModelJobInput
checkpointRunId The id of a previous run that has a pretrained checkpoint for incremental training. string
distributed Whether to use distributed training. bool
earlyStopping Enable early stopping logic during training. bool
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
int
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
int
enableOnnxNormalization Enable normalization when exporting ONNX model. bool
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. int
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
int
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
int
learningRate Initial learning rate. Must be a float in the range [0, 1]. int
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. 'None'
'Step'
'WarmupCosine'
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. int
nesterov Enable nesterov when optimizer is 'sgd'. bool
numberOfEpochs Number of training epochs. Must be a positive integer. int
numberOfWorkers Number of data loader workers. Must be a non-negative integer. int
optimizer Type of optimizer. 'Adam'
'Adamw'
'None'
'Sgd'
randomSeed Random seed to be used when using deterministic training. int
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. int
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. int
trainingBatchSize Training batch size. Must be a positive integer. int
trainingCropSize Image crop size that is input to the neural network for the training dataset. Must be a positive integer. int
validationBatchSize Validation batch size. Must be a positive integer. int
validationCropSize Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. int
validationResizeSize Image size to which to resize before cropping for validation dataset. Must be a positive integer. int
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. int
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. int
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. int
weightedLoss Weighted loss. The accepted values are 0 for no weighted loss.
1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
int

ImageModelSettingsObjectDetection

Name Description Value
advancedSettings Settings for advanced scenarios. string
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. bool
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
boxDetectionsPerImage Maximum number of detections per image, for all classes. Must be a positive integer.
Note: This settings is not supported for the 'yolov5' algorithm.
int
boxScoreThreshold During inference, only return proposals with a classification score greater than
BoxScoreThreshold. Must be a float in the range[0, 1].
int
checkpointFrequency Frequency to store model checkpoints. Must be a positive integer. int
checkpointModel The pretrained checkpoint model for incremental training. MLFlowModelJobInput
checkpointRunId The id of a previous run that has a pretrained checkpoint for incremental training. string
distributed Whether to use distributed training. bool
earlyStopping Enable early stopping logic during training. bool
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
int
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
int
enableOnnxNormalization Enable normalization when exporting ONNX model. bool
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. int
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
int
imageSize Image size for train and validation. Must be a positive integer.
Note: The training run may get into CUDA OOM if the size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
int
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
int
learningRate Initial learning rate. Must be a float in the range [0, 1]. int
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. 'None'
'Step'
'WarmupCosine'
logTrainingMetrics Enable computing and logging training metrics. 'Disable'
'Enable'
logValidationLoss Enable computing and logging validation loss. 'Disable'
'Enable'
maxSize Maximum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
int
minSize Minimum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
int
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
modelSize Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
Note: training run may get into CUDA OOM if the model size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
'ExtraLarge'
'Large'
'Medium'
'None'
'Small'
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. int
multiScale Enable multi-scale image by varying image size by +/- 50%.
Note: training run may get into CUDA OOM if no sufficient GPU memory.
Note: This settings is only supported for the 'yolov5' algorithm.
bool
nesterov Enable nesterov when optimizer is 'sgd'. bool
nmsIouThreshold IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. int
numberOfEpochs Number of training epochs. Must be a positive integer. int
numberOfWorkers Number of data loader workers. Must be a non-negative integer. int
optimizer Type of optimizer. 'Adam'
'Adamw'
'None'
'Sgd'
randomSeed Random seed to be used when using deterministic training. int
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. int
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. int
tileGridSize The grid size to use for tiling each image. Note: TileGridSize must not be
None to enable small object detection logic. A string containing two integers in mxn format.
Note: This settings is not supported for the 'yolov5' algorithm.
string
tileOverlapRatio Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
Note: This settings is not supported for the 'yolov5' algorithm.
int
tilePredictionsNmsThreshold The IOU threshold to use to perform NMS while merging predictions from tiles and image.
Used in validation/ inference. Must be float in the range [0, 1].
Note: This settings is not supported for the 'yolov5' algorithm.
int
trainingBatchSize Training batch size. Must be a positive integer. int
validationBatchSize Validation batch size. Must be a positive integer. int
validationIouThreshold IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. int
validationMetricType Metric computation method to use for validation metrics. 'Coco'
'CocoVoc'
'None'
'Voc'
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. int
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. int
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. int

ImageObjectDetection

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsObjectDetection
primaryMetric Primary metric to optimize for this task. 'MeanAveragePrecision'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageObjectDetection' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageSweepSettings

Name Description Value
earlyTermination Type of early termination policy. EarlyTerminationPolicy
samplingAlgorithm [Required] Type of the hyperparameter sampling algorithms. 'Bayesian'
'Grid'
'Random' (required)

ImportDataAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'ImportData' (required)
dataImportDefinition [Required] Defines Schedule action definition details. DataImport (required)

IntellectualProperty

Name Description Value
protectionLevel Protection level of the Intellectual Property. 'All'
'None'
publisher [Required] Publisher of the Intellectual Property. Must be the same as Registry publisher name. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

JobBaseProperties

Name Description Value
componentId ARM resource ID of the component resource. string
computeId ARM resource ID of the compute resource. string
description The asset description text. string
displayName Display name of job. string
experimentName The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. string
identity Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null.
Defaults to AmlToken if null.
IdentityConfiguration
isArchived Is the asset archived? bool
jobType Set to 'AutoML' for type AutoMLJob. Set to 'Command' for type CommandJob. Set to 'FineTuning' for type FineTuningJob. Set to 'Labeling' for type LabelingJobProperties. Set to 'Pipeline' for type PipelineJob. Set to 'Spark' for type SparkJob. Set to 'Sweep' for type SweepJob. 'AutoML'
'Command'
'FineTuning'
'Labeling'
'Pipeline'
'Spark'
'Sweep' (required)
notificationSetting Notification setting for the job NotificationSetting
properties The asset property dictionary. ResourceBaseProperties
secretsConfiguration Configuration for secrets to be made available during runtime. JobBaseSecretsConfiguration
services List of JobEndpoints.
For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
JobBaseServices
tags Tag dictionary. Tags can be added, removed, and updated. ResourceBaseTags

JobBaseSecretsConfiguration

Name Description Value

JobBaseServices

Name Description Value

JobInput

Name Description Value
description Description for the input. string
jobInputType Set to 'custom_model' for type CustomModelJobInput. Set to 'literal' for type LiteralJobInput. Set to 'mlflow_model' for type MLFlowModelJobInput. Set to 'mltable' for type MLTableJobInput. Set to 'triton_model' for type TritonModelJobInput. Set to 'uri_file' for type UriFileJobInput. Set to 'uri_folder' for type UriFolderJobInput. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)

JobOutput

Name Description Value
description Description for the output. string
jobOutputType Set to 'custom_model' for type CustomModelJobOutput. Set to 'mlflow_model' for type MLFlowModelJobOutput. Set to 'mltable' for type MLTableJobOutput. Set to 'triton_model' for type TritonModelJobOutput. Set to 'uri_file' for type UriFileJobOutput. Set to 'uri_folder' for type UriFolderJobOutput. 'custom_model'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)

JobResourceConfiguration

Name Description Value
dockerArgs Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. string
instanceCount Optional number of instances or nodes used by the compute target. int
instanceType Optional type of VM used as supported by the compute target. string
locations Locations where the job can run. string[]
maxInstanceCount Optional max allowed number of instances or nodes to be used by the compute target.
For use with elastic training, currently supported by PyTorch distribution type only.
int
properties Additional properties bag. ResourceConfigurationProperties
shmSize Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). string

Constraints:
Pattern = \d+[bBkKmMgG]

JobScheduleAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'CreateJob' (required)
jobDefinition [Required] Defines Schedule action definition details. JobBaseProperties (required)

JobService

Name Description Value
endpoint Url for endpoint. string
jobServiceType Endpoint type. string
nodes Nodes that user would like to start the service on.
If Nodes is not set or set to null, the service will only be started on leader node.
Nodes
port Port for endpoint set by user. int
properties Additional properties to set on the endpoint. JobServiceProperties

JobServiceProperties

Name Description Value

LabelCategory

Name Description Value
classes Dictionary of label classes in this category. LabelCategoryClasses
displayName Display name of the label category. string
multiSelect Indicates whether it is allowed to select multiple classes in this category. 'Disabled'
'Enabled'

LabelCategoryClasses

Name Description Value

LabelClass

Name Description Value
displayName Display name of the label class. string
subclasses Dictionary of subclasses of the label class. LabelClassSubclasses

LabelClassSubclasses

Name Description Value

LabelingDataConfiguration

Name Description Value
dataId Resource Id of the data asset to perform labeling. string
incrementalDataRefresh Indicates whether to enable incremental data refresh. 'Disabled'
'Enabled'

LabelingJobImageProperties

Name Description Value
annotationType Annotation type of image labeling job. 'BoundingBox'
'Classification'
'InstanceSegmentation'
mediaType [Required] Media type of the job. 'Image' (required)

LabelingJobInstructions

Name Description Value
uri The link to a page with detailed labeling instructions for labelers. string

LabelingJobLabelCategories

Name Description Value

LabelingJobMediaProperties

Name Description Value
mediaType Set to 'Image' for type LabelingJobImageProperties. Set to 'Text' for type LabelingJobTextProperties. 'Image'
'Text' (required)

LabelingJobProperties

Name Description Value
dataConfiguration Configuration of data used in the job. LabelingDataConfiguration
jobInstructions Labeling instructions of the job. LabelingJobInstructions
jobType [Required] Specifies the type of job. 'Labeling' (required)
labelCategories Label categories of the job. LabelingJobLabelCategories
labelingJobMediaProperties Media type specific properties in the job. LabelingJobMediaProperties
mlAssistConfiguration Configuration of MLAssist feature in the job. MLAssistConfiguration

LabelingJobTextProperties

Name Description Value
annotationType Annotation type of text labeling job. 'Classification'
'NamedEntityRecognition'
mediaType [Required] Media type of the job. 'Text' (required)

LiteralJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'literal' (required)
value [Required] Literal value for the input. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

ManagedComputeIdentity

Name Description Value
computeIdentityType [Required] Monitor compute identity type enum. 'ManagedIdentity' (required)
identity Managed service identity (system assigned and/or user assigned identities) ManagedServiceIdentity

ManagedIdentity

Name Description Value
clientId Specifies a user-assigned identity by client ID. For system-assigned, do not set this field. string

Constraints:
Min length = 36
Max length = 36
Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
identityType [Required] Specifies the type of identity framework. 'Managed' (required)
objectId Specifies a user-assigned identity by object ID. For system-assigned, do not set this field. string

Constraints:
Min length = 36
Max length = 36
Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
resourceId Specifies a user-assigned identity by ARM resource ID. For system-assigned, do not set this field. string

ManagedServiceIdentity

Name Description Value
type Type of managed service identity (where both SystemAssigned and UserAssigned types are allowed). 'None'
'SystemAssigned'
'SystemAssigned,UserAssigned'
'UserAssigned' (required)
userAssignedIdentities The set of user assigned identities associated with the resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}. The dictionary values can be empty objects ({}) in requests. UserAssignedIdentities

MedianStoppingPolicy

Name Description Value
policyType [Required] Name of policy configuration 'MedianStopping' (required)

Microsoft.MachineLearningServices/workspaces/schedules

Name Description Value
name The resource name string

Constraints:
Pattern = ^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$ (required)
parent In Bicep, you can specify the parent resource for a child resource. You only need to add this property when the child resource is declared outside of the parent resource.

For more information, see Child resource outside parent resource.
Symbolic name for resource of type: workspaces
properties [Required] Additional attributes of the entity. ScheduleProperties (required)

MLAssistConfiguration

Name Description Value
mlAssist Set to 'Disabled' for type MLAssistConfigurationDisabled. Set to 'Enabled' for type MLAssistConfigurationEnabled. 'Disabled'
'Enabled' (required)

MLAssistConfigurationDisabled

Name Description Value
mlAssist [Required] Indicates whether MLAssist feature is enabled. 'Disabled' (required)

MLAssistConfigurationEnabled

Name Description Value
inferencingComputeBinding [Required] AML compute binding used in inferencing. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
mlAssist [Required] Indicates whether MLAssist feature is enabled. 'Enabled' (required)
trainingComputeBinding [Required] AML compute binding used in training. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLFlowModelJobInput

Name Description Value
description Description for the input. string
jobInputType [Required] Specifies the type of job. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLFlowModelJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'mlflow_model' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLFlowModelJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'mlflow_model' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

MLTableJobInput

Name Description Value
description Description for the input. string
jobInputType [Required] Specifies the type of job. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLTableJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'mltable' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLTableJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'mltable' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

ModelPerformanceMetricThresholdBase

Name Description Value
modelType Set to 'Classification' for type ClassificationModelPerformanceMetricThreshold. Set to 'Regression' for type RegressionModelPerformanceMetricThreshold. 'Classification'
'Regression' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

ModelPerformanceSignal

Name Description Value
dataSegment The data segment. MonitoringDataSegment
metricThreshold [Required] A list of metrics to calculate and their associated thresholds. ModelPerformanceMetricThresholdBase (required)
productionData [Required] The data produced by the production service which performance will be calculated for. MonitoringInputDataBase[] (required)
referenceData [Required] The reference data used as the basis to calculate model performance. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'ModelPerformance' (required)

MonitorComputeConfigurationBase

Name Description Value
computeType Set to 'ServerlessSpark' for type MonitorServerlessSparkCompute. 'ServerlessSpark' (required)

MonitorComputeIdentityBase

Name Description Value
computeIdentityType Set to 'AmlToken' for type AmlTokenComputeIdentity. Set to 'ManagedIdentity' for type ManagedComputeIdentity. 'AmlToken'
'ManagedIdentity' (required)

MonitorDefinition

Name Description Value
alertNotificationSettings The monitor's notification settings. MonitorNotificationSettings
computeConfiguration [Required] The ARM resource ID of the compute resource to run the monitoring job on. MonitorComputeConfigurationBase (required)
monitoringTarget The ARM resource ID of either the model or deployment targeted by this monitor. MonitoringTarget
signals [Required] The signals to monitor. MonitorDefinitionSignals (required)

MonitorDefinitionSignals

Name Description Value

MonitorEmailNotificationSettings

Name Description Value
emails This is the email recipient list which has a limitation of 499 characters in total. string[]

MonitoringDataSegment

Name Description Value
feature The feature to segment the data on. string
values Filters for only the specified values of the given segmented feature. string[]

MonitoringFeatureFilterBase

Name Description Value
filterType Set to 'AllFeatures' for type AllFeatures. Set to 'FeatureSubset' for type FeatureSubset. Set to 'TopNByAttribution' for type TopNFeaturesByAttribution. 'AllFeatures'
'FeatureSubset'
'TopNByAttribution' (required)

MonitoringInputDataBase

Name Description Value
columns Mapping of column names to special uses. MonitoringInputDataBaseColumns
dataContext The context metadata of the data source. string
inputDataType Set to 'Fixed' for type FixedInputData. Set to 'Rolling' for type RollingInputData. Set to 'Static' for type StaticInputData. 'Fixed'
'Rolling'
'Static' (required)
jobInputType [Required] Specifies the type of job. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MonitoringInputDataBaseColumns

Name Description Value

MonitoringSignalBase

Name Description Value
notificationTypes The current notification mode for this signal. String array containing any of:
'AmlNotification'
'AzureMonitor'
properties Property dictionary. Properties can be added, but not removed or altered. MonitoringSignalBaseProperties
signalType Set to 'Custom' for type CustomMonitoringSignal. Set to 'DataDrift' for type DataDriftMonitoringSignal. Set to 'DataQuality' for type DataQualityMonitoringSignal. Set to 'FeatureAttributionDrift' for type FeatureAttributionDriftMonitoringSignal. Set to 'GenerationSafetyQuality' for type GenerationSafetyQualityMonitoringSignal. Set to 'GenerationTokenStatistics' for type GenerationTokenUsageSignal. Set to 'ModelPerformance' for type ModelPerformanceSignal. Set to 'PredictionDrift' for type PredictionDriftMonitoringSignal. 'Custom'
'DataDrift'
'DataQuality'
'FeatureAttributionDrift'
'GenerationSafetyQuality'
'GenerationTokenStatistics'
'ModelPerformance'
'PredictionDrift' (required)

MonitoringSignalBaseProperties

Name Description Value

MonitoringTarget

Name Description Value
deploymentId The ARM resource ID of either the deployment targeted by this monitor. string
modelId The ARM resource ID of either the model targeted by this monitor. string
taskType [Required] The machine learning task type of the model. 'Classification'
'QuestionAnswering'
'Regression' (required)

MonitoringThreshold

Name Description Value
value The threshold value. If null, the set default is dependent on the metric type. int

MonitoringWorkspaceConnection

Name Description Value
environmentVariables The properties of a workspace service connection to store as environment variables in the submitted jobs.
Key is workspace connection property path, name is environment variable key.
MonitoringWorkspaceConnectionEnvironmentVariables
secrets The properties of a workspace service connection to store as secrets in the submitted jobs.
Key is workspace connection property path, name is secret key.
MonitoringWorkspaceConnectionSecrets

MonitoringWorkspaceConnectionEnvironmentVariables

Name Description Value

MonitoringWorkspaceConnectionSecrets

Name Description Value

MonitorNotificationSettings

Name Description Value
emailNotificationSettings The AML notification email settings. MonitorEmailNotificationSettings

MonitorServerlessSparkCompute

Name Description Value
computeIdentity [Required] The identity scheme leveraged to by the spark jobs running on serverless Spark. MonitorComputeIdentityBase (required)
computeType [Required] Specifies the type of signal to monitor. 'ServerlessSpark' (required)
instanceType [Required] The instance type running the Spark job. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
runtimeVersion [Required] The Spark runtime version. string

Constraints:
Min length = 1
Pattern = ^[0-9]+\.[0-9]+$ (required)

Mpi

Name Description Value
distributionType [Required] Specifies the type of distribution framework. 'Mpi' (required)
processCountPerInstance Number of processes per MPI node. int

NCrossValidations

Name Description Value
mode Set to 'Auto' for type AutoNCrossValidations. Set to 'Custom' for type CustomNCrossValidations. 'Auto'
'Custom' (required)

NlpFixedParameters

Name Description Value
gradientAccumulationSteps Number of steps to accumulate gradients over before running a backward pass. int
learningRate The learning rate for the training procedure. int
learningRateScheduler The type of learning rate schedule to use during the training procedure. 'Constant'
'ConstantWithWarmup'
'Cosine'
'CosineWithRestarts'
'Linear'
'None'
'Polynomial'
modelName The name of the model to train. string
numberOfEpochs Number of training epochs. int
trainingBatchSize The batch size for the training procedure. int
validationBatchSize The batch size to be used during evaluation. int
warmupRatio The warmup ratio, used alongside LrSchedulerType. int
weightDecay The weight decay for the training procedure. int

NlpParameterSubspace

Name Description Value
gradientAccumulationSteps Number of steps to accumulate gradients over before running a backward pass. string
learningRate The learning rate for the training procedure. string
learningRateScheduler The type of learning rate schedule to use during the training procedure. string
modelName The name of the model to train. string
numberOfEpochs Number of training epochs. string
trainingBatchSize The batch size for the training procedure. string
validationBatchSize The batch size to be used during evaluation. string
warmupRatio The warmup ratio, used alongside LrSchedulerType. string
weightDecay The weight decay for the training procedure. string

NlpSweepSettings

Name Description Value
earlyTermination Type of early termination policy for the sweeping job. EarlyTerminationPolicy
samplingAlgorithm [Required] Type of sampling algorithm. 'Bayesian'
'Grid'
'Random' (required)

NlpVerticalFeaturizationSettings

Name Description Value
datasetLanguage Dataset language, useful for the text data. string

NlpVerticalLimitSettings

Name Description Value
maxConcurrentTrials Maximum Concurrent AutoML iterations. int
maxNodes Maximum nodes to use for the experiment. int
maxTrials Number of AutoML iterations. int
timeout AutoML job timeout. string
trialTimeout Timeout for individual HD trials. string

Nodes

Name Description Value
nodesValueType Set to 'All' for type AllNodes. 'All' (required)

NotificationSetting

Name Description Value
emailOn Send email notification to user on specified notification type String array containing any of:
'JobCancelled'
'JobCompleted'
'JobFailed'
emails This is the email recipient list which has a limitation of 499 characters in total concat with comma separator string[]
webhooks Send webhook callback to a service. Key is a user-provided name for the webhook. NotificationSettingWebhooks

NotificationSettingWebhooks

Name Description Value

NumericalDataDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Numerical' (required)
metric [Required] The numerical data drift metric to calculate. 'JensenShannonDistance'
'NormalizedWassersteinDistance'
'PopulationStabilityIndex'
'TwoSampleKolmogorovSmirnovTest' (required)

NumericalDataQualityMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Numerical' (required)
metric [Required] The numerical data quality metric to calculate. 'DataTypeErrorRate'
'NullValueRate'
'OutOfBoundsRate' (required)

NumericalPredictionDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Numerical' (required)
metric [Required] The numerical prediction drift metric to calculate. 'JensenShannonDistance'
'NormalizedWassersteinDistance'
'PopulationStabilityIndex'
'TwoSampleKolmogorovSmirnovTest' (required)

Objective

Name Description Value
goal [Required] Defines supported metric goals for hyperparameter tuning 'Maximize'
'Minimize' (required)
primaryMetric [Required] Name of the metric to optimize. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

PipelineJob

Name Description Value
inputs Inputs for the pipeline job. PipelineJobInputs
jobs Jobs construct the Pipeline Job. PipelineJobJobs
jobType [Required] Specifies the type of job. 'Pipeline' (required)
outputs Outputs for the pipeline job PipelineJobOutputs
settings Pipeline settings, for things like ContinueRunOnStepFailure etc. any
sourceJobId ARM resource ID of source job. string

PipelineJobInputs

Name Description Value

PipelineJobJobs

Name Description Value

PipelineJobOutputs

Name Description Value

PredictionDriftMetricThresholdBase

Name Description Value
dataType Set to 'Categorical' for type CategoricalPredictionDriftMetricThreshold. Set to 'Numerical' for type NumericalPredictionDriftMetricThreshold. 'Categorical'
'Numerical' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

PredictionDriftMonitoringSignal

Name Description Value
featureDataTypeOverride A dictionary that maps feature names to their respective data types. PredictionDriftMonitoringSignalFeatureDataTypeOverride
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. PredictionDriftMetricThresholdBase[] (required)
productionData [Required] The data which drift will be calculated for. MonitoringInputDataBase (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'PredictionDrift' (required)

PredictionDriftMonitoringSignalFeatureDataTypeOverride

Name Description Value

PyTorch

Name Description Value
distributionType [Required] Specifies the type of distribution framework. 'PyTorch' (required)
processCountPerInstance Number of processes per node. int

QueueSettings

Name Description Value
jobTier Controls the compute job tier 'Basic'
'Null'
'Premium'
'Spot'
'Standard'
priority Controls the priority of the job on a compute. int

RandomSamplingAlgorithm

Name Description Value
logbase An optional positive number or e in string format to be used as base for log based random sampling string
rule The specific type of random algorithm 'Random'
'Sobol'
samplingAlgorithmType [Required] The algorithm used for generating hyperparameter values, along with configuration properties 'Random' (required)
seed An optional integer to use as the seed for random number generation int

Ray

Name Description Value
address The address of Ray head node. string
dashboardPort The port to bind the dashboard server to. int
distributionType [Required] Specifies the type of distribution framework. 'Ray' (required)
headNodeAdditionalArgs Additional arguments passed to ray start in head node. string
includeDashboard Provide this argument to start the Ray dashboard GUI. bool
port The port of the head ray process. int
workerNodeAdditionalArgs Additional arguments passed to ray start in worker node. string

RecurrenceSchedule

Name Description Value
hours [Required] List of hours for the schedule. int[] (required)
minutes [Required] List of minutes for the schedule. int[] (required)
monthDays List of month days for the schedule int[]
weekDays List of days for the schedule. String array containing any of:
'Friday'
'Monday'
'Saturday'
'Sunday'
'Thursday'
'Tuesday'
'Wednesday'

RecurrenceTrigger

Name Description Value
frequency [Required] The frequency to trigger schedule. 'Day'
'Hour'
'Minute'
'Month'
'Week' (required)
interval [Required] Specifies schedule interval in conjunction with frequency int (required)
schedule The recurrence schedule. RecurrenceSchedule
triggerType [Required] 'Recurrence' (required)

Regression

Name Description Value
cvSplitColumnNames Columns to use for CVSplit data. string[]
featurizationSettings Featurization inputs needed for AutoML job. TableVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. TableFixedParameters
limitSettings Execution constraints for AutoMLJob. TableVerticalLimitSettings
nCrossValidations Number of cross validation folds to be applied on training dataset
when validation dataset is not provided.
NCrossValidations
primaryMetric Primary metric for regression task. 'NormalizedMeanAbsoluteError'
'NormalizedRootMeanSquaredError'
'R2Score'
'SpearmanCorrelation'
searchSpace Search space for sampling different combinations of models and their hyperparameters. TableParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. TableSweepSettings
taskType [Required] Task type for AutoMLJob. 'Regression' (required)
testData Test data input. MLTableJobInput
testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
trainingSettings Inputs for training phase for an AutoML Job. RegressionTrainingSettings
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. string

RegressionModelPerformanceMetricThreshold

Name Description Value
metric [Required] The regression model performance metric to calculate. 'MeanAbsoluteError'
'MeanSquaredError'
'RootMeanSquaredError' (required)
modelType [Required] Specifies the data type of the metric threshold. 'Regression' (required)

RegressionTrainingSettings

Name Description Value
allowedTrainingAlgorithms Allowed models for regression task. String array containing any of:
'DecisionTree'
'ElasticNet'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'RandomForest'
'SGD'
'XGBoostRegressor'
blockedTrainingAlgorithms Blocked models for regression task. String array containing any of:
'DecisionTree'
'ElasticNet'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'RandomForest'
'SGD'
'XGBoostRegressor'
enableDnnTraining Enable recommendation of DNN models. bool
enableModelExplainability Flag to turn on explainability on best model. bool
enableOnnxCompatibleModels Flag for enabling onnx compatible models. bool
enableStackEnsemble Enable stack ensemble run. bool
enableVoteEnsemble Enable voting ensemble run. bool
ensembleModelDownloadTimeout During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
Configure this parameter with a higher value than 300 secs, if more time is needed.
string
stackEnsembleSettings Stack ensemble settings for stack ensemble run. StackEnsembleSettings
trainingMode TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'.
If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen.
If 'NonDistributed' then only non distributed algorithms are chosen.
'Auto'
'Distributed'
'NonDistributed'

ResourceBaseProperties

Name Description Value

ResourceBaseProperties

Name Description Value

ResourceBaseProperties

Name Description Value

ResourceBaseTags

Name Description Value

ResourceBaseTags

Name Description Value

ResourceBaseTags

Name Description Value

ResourceConfigurationProperties

Name Description Value

RollingInputData

Name Description Value
inputDataType [Required] Specifies the type of signal to monitor. 'Rolling' (required)
preprocessingComponentId The ARM resource ID of the component resource used to preprocess the data. string
windowOffset [Required] The time offset between the end of the data window and the monitor's current run time. string (required)
windowSize [Required] The size of the trailing data window. string (required)

SamplingAlgorithm

Name Description Value
samplingAlgorithmType Set to 'Bayesian' for type BayesianSamplingAlgorithm. Set to 'Grid' for type GridSamplingAlgorithm. Set to 'Random' for type RandomSamplingAlgorithm. 'Bayesian'
'Grid'
'Random' (required)

ScheduleActionBase

Name Description Value
actionType Set to 'CreateJob' for type JobScheduleAction. Set to 'CreateMonitor' for type CreateMonitorAction. Set to 'ImportData' for type ImportDataAction. Set to 'InvokeBatchEndpoint' for type EndpointScheduleAction. 'CreateJob'
'CreateMonitor'
'ImportData'
'InvokeBatchEndpoint' (required)

ScheduleProperties

Name Description Value
action [Required] Specifies the action of the schedule ScheduleActionBase (required)
description The asset description text. string
displayName Display name of schedule. string
isEnabled Is the schedule enabled? bool
properties The asset property dictionary. ResourceBaseProperties
tags Tag dictionary. Tags can be added, removed, and updated. ResourceBaseTags
trigger [Required] Specifies the trigger details TriggerBase (required)

Seasonality

Name Description Value
mode Set to 'Auto' for type AutoSeasonality. Set to 'Custom' for type CustomSeasonality. 'Auto'
'Custom' (required)

SecretConfiguration

Name Description Value
uri Secret Uri.
Sample Uri : https://myvault.vault.azure.net/secrets/mysecretname/secretversion
string
workspaceSecretName Name of secret in workspace key vault. string

SparkJob

Name Description Value
archives Archive files used in the job. string[]
args Arguments for the job. string
codeId [Required] ARM resource ID of the code asset. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
conf Spark configured properties. SparkJobConf
entry [Required] The entry to execute on startup of the job. SparkJobEntry (required)
environmentId The ARM resource ID of the Environment specification for the job. string
environmentVariables Environment variables included in the job. SparkJobEnvironmentVariables
files Files used in the job. string[]
inputs Mapping of input data bindings used in the job. SparkJobInputs
jars Jar files used in the job. string[]
jobType [Required] Specifies the type of job. 'Spark' (required)
outputs Mapping of output data bindings used in the job. SparkJobOutputs
pyFiles Python files used in the job. string[]
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. SparkResourceConfiguration

SparkJobConf

Name Description Value

SparkJobEntry

Name Description Value
sparkJobEntryType Set to 'SparkJobPythonEntry' for type SparkJobPythonEntry. Set to 'SparkJobScalaEntry' for type SparkJobScalaEntry. 'SparkJobPythonEntry'
'SparkJobScalaEntry' (required)

SparkJobEnvironmentVariables

Name Description Value

SparkJobInputs

Name Description Value

SparkJobOutputs

Name Description Value

SparkJobPythonEntry

Name Description Value
file [Required] Relative python file path for job entry point. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
sparkJobEntryType [Required] Type of the job's entry point. 'SparkJobPythonEntry' (required)

SparkJobScalaEntry

Name Description Value
className [Required] Scala class name used as entry point. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
sparkJobEntryType [Required] Type of the job's entry point. 'SparkJobScalaEntry' (required)

SparkResourceConfiguration

Name Description Value
instanceType Optional type of VM used as supported by the compute target. string
runtimeVersion Version of spark runtime used for the job. string

StackEnsembleSettings

Name Description Value
stackMetaLearnerKWargs Optional parameters to pass to the initializer of the meta-learner. any
stackMetaLearnerTrainPercentage Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. int
stackMetaLearnerType The meta-learner is a model trained on the output of the individual heterogeneous models. 'ElasticNet'
'ElasticNetCV'
'LightGBMClassifier'
'LightGBMRegressor'
'LinearRegression'
'LogisticRegression'
'LogisticRegressionCV'
'None'

StaticInputData

Name Description Value
inputDataType [Required] Specifies the type of signal to monitor. 'Static' (required)
preprocessingComponentId The ARM resource ID of the component resource used to preprocess the data. string
windowEnd [Required] The end date of the data window. string (required)
windowStart [Required] The start date of the data window. string (required)

SweepJob

Name Description Value
componentConfiguration Component Configuration for sweep over component ComponentConfiguration
earlyTermination Early termination policies enable canceling poor-performing runs before they complete EarlyTerminationPolicy
inputs Mapping of input data bindings used in the job. SweepJobInputs
jobType [Required] Specifies the type of job. 'Sweep' (required)
limits Sweep Job limit. SweepJobLimits
objective [Required] Optimization objective. Objective (required)
outputs Mapping of output data bindings used in the job. SweepJobOutputs
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. JobResourceConfiguration
samplingAlgorithm [Required] The hyperparameter sampling algorithm SamplingAlgorithm (required)
searchSpace [Required] A dictionary containing each parameter and its distribution. The dictionary key is the name of the parameter any (required)
trial [Required] Trial component definition. TrialComponent (required)

SweepJobInputs

Name Description Value

SweepJobLimits

Name Description Value
jobLimitsType [Required] JobLimit type. 'Command'
'Sweep' (required)
maxConcurrentTrials Sweep Job max concurrent trials. int
maxTotalTrials Sweep Job max total trials. int
timeout The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. string
trialTimeout Sweep Job Trial timeout value. string

SweepJobOutputs

Name Description Value

TableFixedParameters

Name Description Value
booster Specify the boosting type, e.g gbdt for XGBoost. string
boostingType Specify the boosting type, e.g gbdt for LightGBM. string
growPolicy Specify the grow policy, which controls the way new nodes are added to the tree. string
learningRate The learning rate for the training procedure. int
maxBin Specify the Maximum number of discrete bins to bucket continuous features . int
maxDepth Specify the max depth to limit the tree depth explicitly. int
maxLeaves Specify the max leaves to limit the tree leaves explicitly. int
minDataInLeaf The minimum number of data per leaf. int
minSplitGain Minimum loss reduction required to make a further partition on a leaf node of the tree. int
modelName The name of the model to train. string
nEstimators Specify the number of trees (or rounds) in an model. int
numLeaves Specify the number of leaves. int
preprocessorName The name of the preprocessor to use. string
regAlpha L1 regularization term on weights. int
regLambda L2 regularization term on weights. int
subsample Subsample ratio of the training instance. int
subsampleFreq Frequency of subsample. int
treeMethod Specify the tree method. string
withMean If true, center before scaling the data with StandardScalar. bool
withStd If true, scaling the data with Unit Variance with StandardScalar. bool

TableParameterSubspace

Name Description Value
booster Specify the boosting type, e.g gbdt for XGBoost. string
boostingType Specify the boosting type, e.g gbdt for LightGBM. string
growPolicy Specify the grow policy, which controls the way new nodes are added to the tree. string
learningRate The learning rate for the training procedure. string
maxBin Specify the Maximum number of discrete bins to bucket continuous features . string
maxDepth Specify the max depth to limit the tree depth explicitly. string
maxLeaves Specify the max leaves to limit the tree leaves explicitly. string
minDataInLeaf The minimum number of data per leaf. string
minSplitGain Minimum loss reduction required to make a further partition on a leaf node of the tree. string
modelName The name of the model to train. string
nEstimators Specify the number of trees (or rounds) in an model. string
numLeaves Specify the number of leaves. string
preprocessorName The name of the preprocessor to use. string
regAlpha L1 regularization term on weights. string
regLambda L2 regularization term on weights. string
subsample Subsample ratio of the training instance. string
subsampleFreq Frequency of subsample string
treeMethod Specify the tree method. string
withMean If true, center before scaling the data with StandardScalar. string
withStd If true, scaling the data with Unit Variance with StandardScalar. string

TableSweepSettings

Name Description Value
earlyTermination Type of early termination policy for the sweeping job. EarlyTerminationPolicy
samplingAlgorithm [Required] Type of sampling algorithm. 'Bayesian'
'Grid'
'Random' (required)

TableVerticalFeaturizationSettings

Name Description Value
blockedTransformers These transformers shall not be used in featurization. String array containing any of:
'CatTargetEncoder'
'CountVectorizer'
'HashOneHotEncoder'
'LabelEncoder'
'NaiveBayes'
'OneHotEncoder'
'TextTargetEncoder'
'TfIdf'
'WoETargetEncoder'
'WordEmbedding'
columnNameAndTypes Dictionary of column name and its type (int, float, string, datetime etc). TableVerticalFeaturizationSettingsColumnNameAndTypes
datasetLanguage Dataset language, useful for the text data. string
enableDnnFeaturization Determines whether to use Dnn based featurizers for data featurization. bool
mode Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
If 'Off' is selected then no featurization is done.
If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
'Auto'
'Custom'
'Off'
transformerParams User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. TableVerticalFeaturizationSettingsTransformerParams

TableVerticalFeaturizationSettingsColumnNameAndTypes

Name Description Value

TableVerticalFeaturizationSettingsTransformerParams

Name Description Value

TableVerticalLimitSettings

Name Description Value
enableEarlyTermination Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. bool
exitScore Exit score for the AutoML job. int
maxConcurrentTrials Maximum Concurrent iterations. int
maxCoresPerTrial Max cores per iteration. int
maxNodes Maximum nodes to use for the experiment. int
maxTrials Number of iterations. int
sweepConcurrentTrials Number of concurrent sweeping runs that user wants to trigger. int
sweepTrials Number of sweeping runs that user wants to trigger. int
timeout AutoML job timeout. string
trialTimeout Iteration timeout. string

TargetLags

Name Description Value
mode Set to 'Auto' for type AutoTargetLags. Set to 'Custom' for type CustomTargetLags. 'Auto'
'Custom' (required)

TargetRollingWindowSize

Name Description Value
mode Set to 'Auto' for type AutoTargetRollingWindowSize. Set to 'Custom' for type CustomTargetRollingWindowSize. 'Auto'
'Custom' (required)

TensorFlow

Name Description Value
distributionType [Required] Specifies the type of distribution framework. 'TensorFlow' (required)
parameterServerCount Number of parameter server tasks. int
workerCount Number of workers. If not specified, will default to the instance count. int

TextClassification

Name Description Value
featurizationSettings Featurization inputs needed for AutoML job. NlpVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. NlpFixedParameters
limitSettings Execution constraints for AutoMLJob. NlpVerticalLimitSettings
primaryMetric Primary metric for Text-Classification task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. NlpParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. NlpSweepSettings
taskType [Required] Task type for AutoMLJob. 'TextClassification' (required)
validationData Validation data inputs. MLTableJobInput

TextClassificationMultilabel

Name Description Value
featurizationSettings Featurization inputs needed for AutoML job. NlpVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. NlpFixedParameters
limitSettings Execution constraints for AutoMLJob. NlpVerticalLimitSettings
searchSpace Search space for sampling different combinations of models and their hyperparameters. NlpParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. NlpSweepSettings
taskType [Required] Task type for AutoMLJob. 'TextClassificationMultilabel' (required)
validationData Validation data inputs. MLTableJobInput

TextNer

Name Description Value
featurizationSettings Featurization inputs needed for AutoML job. NlpVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. NlpFixedParameters
limitSettings Execution constraints for AutoMLJob. NlpVerticalLimitSettings
searchSpace Search space for sampling different combinations of models and their hyperparameters. NlpParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. NlpSweepSettings
taskType [Required] Task type for AutoMLJob. 'TextNER' (required)
validationData Validation data inputs. MLTableJobInput

TopNFeaturesByAttribution

Name Description Value
filterType [Required] Specifies the feature filter to leverage when selecting features to calculate metrics over. 'TopNByAttribution' (required)
top The number of top features to include. int

TrialComponent

Name Description Value
codeId ARM resource ID of the code asset. string
command [Required] The command to execute on startup of the job. eg. "python train.py" string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
distribution Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. DistributionConfiguration
environmentId [Required] The ARM resource ID of the Environment specification for the job. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
environmentVariables Environment variables included in the job. TrialComponentEnvironmentVariables
resources Compute Resource configuration for the job. JobResourceConfiguration

TrialComponentEnvironmentVariables

Name Description Value

TriggerBase

Name Description Value
endTime Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601.
Recommented format would be "2022-06-01T00:00:01"
If not present, the schedule will run indefinitely
string
startTime Specifies start time of schedule in ISO 8601 format, but without a UTC offset. string
timeZone Specifies time zone in which the schedule runs.
TimeZone should follow Windows time zone format. Refer: /windows-hardware/manufacture/desktop/default-time-zones?view=windows-11
string
triggerType Set to 'Cron' for type CronTrigger. Set to 'Recurrence' for type RecurrenceTrigger. 'Cron'
'Recurrence' (required)

TritonModelJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'triton_model' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

TritonModelJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'triton_model' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

TruncationSelectionPolicy

Name Description Value
policyType [Required] Name of policy configuration 'TruncationSelection' (required)
truncationPercentage The percentage of runs to cancel at each evaluation interval. int

UriFileJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'uri_file' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

UriFileJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'uri_file' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

UriFolderJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'uri_folder' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

UriFolderJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'uri_folder' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

UserAssignedIdentities

Name Description Value

UserAssignedIdentity

Name Description Value

UserIdentity

Name Description Value
identityType [Required] Specifies the type of identity framework. 'UserIdentity' (required)

Webhook

Name Description Value
eventType Send callback on a specified notification event string
webhookType Set to 'AzureDevOps' for type AzureDevOpsWebhook. 'AzureDevOps' (required)

ARM template resource definition

The workspaces/schedules resource type can be deployed with operations that target:

For a list of changed properties in each API version, see change log.

Resource format

To create a Microsoft.MachineLearningServices/workspaces/schedules resource, add the following JSON to your template.

{
  "type": "Microsoft.MachineLearningServices/workspaces/schedules",
  "apiVersion": "2024-04-01-preview",
  "name": "string",
  "properties": {
    "action": {
      "actionType": "string"
      // For remaining properties, see ScheduleActionBase objects
    },
    "description": "string",
    "displayName": "string",
    "isEnabled": "bool",
    "properties": {
      "{customized property}": "string"
    },
    "tags": {
      "{customized property}": "string"
    },
    "trigger": {
      "endTime": "string",
      "startTime": "string",
      "timeZone": "string",
      "triggerType": "string"
      // For remaining properties, see TriggerBase objects
    }
  }
}

JobBaseProperties objects

Set the jobType property to specify the type of object.

For AutoML, use:

{
  "environmentId": "string",
  "environmentVariables": {
    "{customized property}": "string"
  },
  "jobType": "AutoML",
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "queueSettings": {
    "jobTier": "string",
    "priority": "int"
  },
  "resources": {
    "dockerArgs": "string",
    "instanceCount": "int",
    "instanceType": "string",
    "locations": [ "string" ],
    "maxInstanceCount": "int",
    "properties": {
      "{customized property}": {}
    },
    "shmSize": "string"
  },
  "taskDetails": {
    "logVerbosity": "string",
    "targetColumnName": "string",
    "trainingData": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "pathOnCompute": "string",
      "uri": "string"
    },
    "taskType": "string"
    // For remaining properties, see AutoMLVertical objects
  }
}

For Command, use:

{
  "autologgerSettings": {
    "mlflowAutologger": "string"
  },
  "codeId": "string",
  "command": "string",
  "distribution": {
    "distributionType": "string"
    // For remaining properties, see DistributionConfiguration objects
  },
  "environmentId": "string",
  "environmentVariables": {
    "{customized property}": "string"
  },
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "jobType": "Command",
  "limits": {
    "jobLimitsType": "string",
    "timeout": "string"
  },
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "queueSettings": {
    "jobTier": "string",
    "priority": "int"
  },
  "resources": {
    "dockerArgs": "string",
    "instanceCount": "int",
    "instanceType": "string",
    "locations": [ "string" ],
    "maxInstanceCount": "int",
    "properties": {
      "{customized property}": {}
    },
    "shmSize": "string"
  }
}

For FineTuning, use:

{
  "fineTuningDetails": {
    "model": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "pathOnCompute": "string",
      "uri": "string"
    },
    "taskType": "string",
    "trainingData": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    },
    "validationData": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    },
    "modelProvider": "string"
    // For remaining properties, see FineTuningVertical objects
  },
  "jobType": "FineTuning",
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  }
}

For Labeling, use:

{
  "dataConfiguration": {
    "dataId": "string",
    "incrementalDataRefresh": "string"
  },
  "jobInstructions": {
    "uri": "string"
  },
  "jobType": "Labeling",
  "labelCategories": {
    "{customized property}": {
      "classes": {
        "{customized property}": {
          "displayName": "string",
          "subclasses": {
            "{customized property}": ...
          }
        }
      },
      "displayName": "string",
      "multiSelect": "string"
    }
  },
  "labelingJobMediaProperties": {
    "mediaType": "string"
    // For remaining properties, see LabelingJobMediaProperties objects
  },
  "mlAssistConfiguration": {
    "mlAssist": "string"
    // For remaining properties, see MLAssistConfiguration objects
  }
}

For Pipeline, use:

{
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "jobs": {
    "{customized property}": {}
  },
  "jobType": "Pipeline",
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "settings": {},
  "sourceJobId": "string"
}

For Spark, use:

{
  "archives": [ "string" ],
  "args": "string",
  "codeId": "string",
  "conf": {
    "{customized property}": "string"
  },
  "entry": {
    "sparkJobEntryType": "string"
    // For remaining properties, see SparkJobEntry objects
  },
  "environmentId": "string",
  "environmentVariables": {
    "{customized property}": "string"
  },
  "files": [ "string" ],
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "jars": [ "string" ],
  "jobType": "Spark",
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "pyFiles": [ "string" ],
  "queueSettings": {
    "jobTier": "string",
    "priority": "int"
  },
  "resources": {
    "instanceType": "string",
    "runtimeVersion": "string"
  }
}

For Sweep, use:

{
  "componentConfiguration": {
    "pipelineSettings": {}
  },
  "earlyTermination": {
    "delayEvaluation": "int",
    "evaluationInterval": "int",
    "policyType": "string"
    // For remaining properties, see EarlyTerminationPolicy objects
  },
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "jobType": "Sweep",
  "limits": {
    "jobLimitsType": "string",
    "maxConcurrentTrials": "int",
    "maxTotalTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "objective": {
    "goal": "string",
    "primaryMetric": "string"
  },
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "queueSettings": {
    "jobTier": "string",
    "priority": "int"
  },
  "resources": {
    "dockerArgs": "string",
    "instanceCount": "int",
    "instanceType": "string",
    "locations": [ "string" ],
    "maxInstanceCount": "int",
    "properties": {
      "{customized property}": {}
    },
    "shmSize": "string"
  },
  "samplingAlgorithm": {
    "samplingAlgorithmType": "string"
    // For remaining properties, see SamplingAlgorithm objects
  },
  "searchSpace": {},
  "trial": {
    "codeId": "string",
    "command": "string",
    "distribution": {
      "distributionType": "string"
      // For remaining properties, see DistributionConfiguration objects
    },
    "environmentId": "string",
    "environmentVariables": {
      "{customized property}": "string"
    },
    "resources": {
      "dockerArgs": "string",
      "instanceCount": "int",
      "instanceType": "string",
      "locations": [ "string" ],
      "maxInstanceCount": "int",
      "properties": {
        "{customized property}": {}
      },
      "shmSize": "string"
    }
  }
}

MLAssistConfiguration objects

Set the mlAssist property to specify the type of object.

For Disabled, use:

{
  "mlAssist": "Disabled"
}

For Enabled, use:

{
  "inferencingComputeBinding": "string",
  "mlAssist": "Enabled",
  "trainingComputeBinding": "string"
}

AutoMLVertical objects

Set the taskType property to specify the type of object.

For Classification, use:

{
  "cvSplitColumnNames": [ "string" ],
  "featurizationSettings": {
    "blockedTransformers": [ "string" ],
    "columnNameAndTypes": {
      "{customized property}": "string"
    },
    "datasetLanguage": "string",
    "enableDnnFeaturization": "bool",
    "mode": "string",
    "transformerParams": {
      "{customized property}": [
        {
          "fields": [ "string" ],
          "parameters": {}
        }
      ]
    }
  },
  "fixedParameters": {
    "booster": "string",
    "boostingType": "string",
    "growPolicy": "string",
    "learningRate": "int",
    "maxBin": "int",
    "maxDepth": "int",
    "maxLeaves": "int",
    "minDataInLeaf": "int",
    "minSplitGain": "int",
    "modelName": "string",
    "nEstimators": "int",
    "numLeaves": "int",
    "preprocessorName": "string",
    "regAlpha": "int",
    "regLambda": "int",
    "subsample": "int",
    "subsampleFreq": "int",
    "treeMethod": "string",
    "withMean": "bool",
    "withStd": "bool"
  },
  "limitSettings": {
    "enableEarlyTermination": "bool",
    "exitScore": "int",
    "maxConcurrentTrials": "int",
    "maxCoresPerTrial": "int",
    "maxNodes": "int",
    "maxTrials": "int",
    "sweepConcurrentTrials": "int",
    "sweepTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "nCrossValidations": {
    "mode": "string"
    // For remaining properties, see NCrossValidations objects
  },
  "positiveLabel": "string",
  "primaryMetric": "string",
  "searchSpace": [
    {
      "booster": "string",
      "boostingType": "string",
      "growPolicy": "string",
      "learningRate": "string",
      "maxBin": "string",
      "maxDepth": "string",
      "maxLeaves": "string",
      "minDataInLeaf": "string",
      "minSplitGain": "string",
      "modelName": "string",
      "nEstimators": "string",
      "numLeaves": "string",
      "preprocessorName": "string",
      "regAlpha": "string",
      "regLambda": "string",
      "subsample": "string",
      "subsampleFreq": "string",
      "treeMethod": "string",
      "withMean": "string",
      "withStd": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "Classification",
  "testData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "testDataSize": "int",
  "trainingSettings": {
    "allowedTrainingAlgorithms": [ "string" ],
    "blockedTrainingAlgorithms": [ "string" ],
    "enableDnnTraining": "bool",
    "enableModelExplainability": "bool",
    "enableOnnxCompatibleModels": "bool",
    "enableStackEnsemble": "bool",
    "enableVoteEnsemble": "bool",
    "ensembleModelDownloadTimeout": "string",
    "stackEnsembleSettings": {
      "stackMetaLearnerKWargs": {},
      "stackMetaLearnerTrainPercentage": "int",
      "stackMetaLearnerType": "string"
    },
    "trainingMode": "string"
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "validationDataSize": "int",
  "weightColumnName": "string"
}

For Forecasting, use:

{
  "cvSplitColumnNames": [ "string" ],
  "featurizationSettings": {
    "blockedTransformers": [ "string" ],
    "columnNameAndTypes": {
      "{customized property}": "string"
    },
    "datasetLanguage": "string",
    "enableDnnFeaturization": "bool",
    "mode": "string",
    "transformerParams": {
      "{customized property}": [
        {
          "fields": [ "string" ],
          "parameters": {}
        }
      ]
    }
  },
  "fixedParameters": {
    "booster": "string",
    "boostingType": "string",
    "growPolicy": "string",
    "learningRate": "int",
    "maxBin": "int",
    "maxDepth": "int",
    "maxLeaves": "int",
    "minDataInLeaf": "int",
    "minSplitGain": "int",
    "modelName": "string",
    "nEstimators": "int",
    "numLeaves": "int",
    "preprocessorName": "string",
    "regAlpha": "int",
    "regLambda": "int",
    "subsample": "int",
    "subsampleFreq": "int",
    "treeMethod": "string",
    "withMean": "bool",
    "withStd": "bool"
  },
  "forecastingSettings": {
    "countryOrRegionForHolidays": "string",
    "cvStepSize": "int",
    "featureLags": "string",
    "featuresUnknownAtForecastTime": [ "string" ],
    "forecastHorizon": {
      "mode": "string"
      // For remaining properties, see ForecastHorizon objects
    },
    "frequency": "string",
    "seasonality": {
      "mode": "string"
      // For remaining properties, see Seasonality objects
    },
    "shortSeriesHandlingConfig": "string",
    "targetAggregateFunction": "string",
    "targetLags": {
      "mode": "string"
      // For remaining properties, see TargetLags objects
    },
    "targetRollingWindowSize": {
      "mode": "string"
      // For remaining properties, see TargetRollingWindowSize objects
    },
    "timeColumnName": "string",
    "timeSeriesIdColumnNames": [ "string" ],
    "useStl": "string"
  },
  "limitSettings": {
    "enableEarlyTermination": "bool",
    "exitScore": "int",
    "maxConcurrentTrials": "int",
    "maxCoresPerTrial": "int",
    "maxNodes": "int",
    "maxTrials": "int",
    "sweepConcurrentTrials": "int",
    "sweepTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "nCrossValidations": {
    "mode": "string"
    // For remaining properties, see NCrossValidations objects
  },
  "primaryMetric": "string",
  "searchSpace": [
    {
      "booster": "string",
      "boostingType": "string",
      "growPolicy": "string",
      "learningRate": "string",
      "maxBin": "string",
      "maxDepth": "string",
      "maxLeaves": "string",
      "minDataInLeaf": "string",
      "minSplitGain": "string",
      "modelName": "string",
      "nEstimators": "string",
      "numLeaves": "string",
      "preprocessorName": "string",
      "regAlpha": "string",
      "regLambda": "string",
      "subsample": "string",
      "subsampleFreq": "string",
      "treeMethod": "string",
      "withMean": "string",
      "withStd": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "Forecasting",
  "testData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "testDataSize": "int",
  "trainingSettings": {
    "allowedTrainingAlgorithms": [ "string" ],
    "blockedTrainingAlgorithms": [ "string" ],
    "enableDnnTraining": "bool",
    "enableModelExplainability": "bool",
    "enableOnnxCompatibleModels": "bool",
    "enableStackEnsemble": "bool",
    "enableVoteEnsemble": "bool",
    "ensembleModelDownloadTimeout": "string",
    "stackEnsembleSettings": {
      "stackMetaLearnerKWargs": {},
      "stackMetaLearnerTrainPercentage": "int",
      "stackMetaLearnerType": "string"
    },
    "trainingMode": "string"
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "validationDataSize": "int",
  "weightColumnName": "string"
}

For ImageClassification, use:

{
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "modelSettings": {
    "advancedSettings": "string",
    "amsGradient": "bool",
    "augmentations": "string",
    "beta1": "int",
    "beta2": "int",
    "checkpointFrequency": "int",
    "checkpointModel": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "pathOnCompute": "string",
      "uri": "string"
    },
    "checkpointRunId": "string",
    "distributed": "bool",
    "earlyStopping": "bool",
    "earlyStoppingDelay": "int",
    "earlyStoppingPatience": "int",
    "enableOnnxNormalization": "bool",
    "evaluationFrequency": "int",
    "gradientAccumulationStep": "int",
    "layersToFreeze": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "modelName": "string",
    "momentum": "int",
    "nesterov": "bool",
    "numberOfEpochs": "int",
    "numberOfWorkers": "int",
    "optimizer": "string",
    "randomSeed": "int",
    "stepLRGamma": "int",
    "stepLRStepSize": "int",
    "trainingBatchSize": "int",
    "trainingCropSize": "int",
    "validationBatchSize": "int",
    "validationCropSize": "int",
    "validationResizeSize": "int",
    "warmupCosineLRCycles": "int",
    "warmupCosineLRWarmupEpochs": "int",
    "weightDecay": "int",
    "weightedLoss": "int"
  },
  "primaryMetric": "string",
  "searchSpace": [
    {
      "amsGradient": "string",
      "augmentations": "string",
      "beta1": "string",
      "beta2": "string",
      "distributed": "string",
      "earlyStopping": "string",
      "earlyStoppingDelay": "string",
      "earlyStoppingPatience": "string",
      "enableOnnxNormalization": "string",
      "evaluationFrequency": "string",
      "gradientAccumulationStep": "string",
      "layersToFreeze": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "modelName": "string",
      "momentum": "string",
      "nesterov": "string",
      "numberOfEpochs": "string",
      "numberOfWorkers": "string",
      "optimizer": "string",
      "randomSeed": "string",
      "stepLRGamma": "string",
      "stepLRStepSize": "string",
      "trainingBatchSize": "string",
      "trainingCropSize": "string",
      "validationBatchSize": "string",
      "validationCropSize": "string",
      "validationResizeSize": "string",
      "warmupCosineLRCycles": "string",
      "warmupCosineLRWarmupEpochs": "string",
      "weightDecay": "string",
      "weightedLoss": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "ImageClassification",
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "validationDataSize": "int"
}

For ImageClassificationMultilabel, use:

{
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "modelSettings": {
    "advancedSettings": "string",
    "amsGradient": "bool",
    "augmentations": "string",
    "beta1": "int",
    "beta2": "int",
    "checkpointFrequency": "int",
    "checkpointModel": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "pathOnCompute": "string",
      "uri": "string"
    },
    "checkpointRunId": "string",
    "distributed": "bool",
    "earlyStopping": "bool",
    "earlyStoppingDelay": "int",
    "earlyStoppingPatience": "int",
    "enableOnnxNormalization": "bool",
    "evaluationFrequency": "int",
    "gradientAccumulationStep": "int",
    "layersToFreeze": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "modelName": "string",
    "momentum": "int",
    "nesterov": "bool",
    "numberOfEpochs": "int",
    "numberOfWorkers": "int",
    "optimizer": "string",
    "randomSeed": "int",
    "stepLRGamma": "int",
    "stepLRStepSize": "int",
    "trainingBatchSize": "int",
    "trainingCropSize": "int",
    "validationBatchSize": "int",
    "validationCropSize": "int",
    "validationResizeSize": "int",
    "warmupCosineLRCycles": "int",
    "warmupCosineLRWarmupEpochs": "int",
    "weightDecay": "int",
    "weightedLoss": "int"
  },
  "primaryMetric": "string",
  "searchSpace": [
    {
      "amsGradient": "string",
      "augmentations": "string",
      "beta1": "string",
      "beta2": "string",
      "distributed": "string",
      "earlyStopping": "string",
      "earlyStoppingDelay": "string",
      "earlyStoppingPatience": "string",
      "enableOnnxNormalization": "string",
      "evaluationFrequency": "string",
      "gradientAccumulationStep": "string",
      "layersToFreeze": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "modelName": "string",
      "momentum": "string",
      "nesterov": "string",
      "numberOfEpochs": "string",
      "numberOfWorkers": "string",
      "optimizer": "string",
      "randomSeed": "string",
      "stepLRGamma": "string",
      "stepLRStepSize": "string",
      "trainingBatchSize": "string",
      "trainingCropSize": "string",
      "validationBatchSize": "string",
      "validationCropSize": "string",
      "validationResizeSize": "string",
      "warmupCosineLRCycles": "string",
      "warmupCosineLRWarmupEpochs": "string",
      "weightDecay": "string",
      "weightedLoss": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "ImageClassificationMultilabel",
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "validationDataSize": "int"
}

For ImageInstanceSegmentation, use:

{
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "modelSettings": {
    "advancedSettings": "string",
    "amsGradient": "bool",
    "augmentations": "string",
    "beta1": "int",
    "beta2": "int",
    "boxDetectionsPerImage": "int",
    "boxScoreThreshold": "int",
    "checkpointFrequency": "int",
    "checkpointModel": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "pathOnCompute": "string",
      "uri": "string"
    },
    "checkpointRunId": "string",
    "distributed": "bool",
    "earlyStopping": "bool",
    "earlyStoppingDelay": "int",
    "earlyStoppingPatience": "int",
    "enableOnnxNormalization": "bool",
    "evaluationFrequency": "int",
    "gradientAccumulationStep": "int",
    "imageSize": "int",
    "layersToFreeze": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "logTrainingMetrics": "string",
    "logValidationLoss": "string",
    "maxSize": "int",
    "minSize": "int",
    "modelName": "string",
    "modelSize": "string",
    "momentum": "int",
    "multiScale": "bool",
    "nesterov": "bool",
    "nmsIouThreshold": "int",
    "numberOfEpochs": "int",
    "numberOfWorkers": "int",
    "optimizer": "string",
    "randomSeed": "int",
    "stepLRGamma": "int",
    "stepLRStepSize": "int",
    "tileGridSize": "string",
    "tileOverlapRatio": "int",
    "tilePredictionsNmsThreshold": "int",
    "trainingBatchSize": "int",
    "validationBatchSize": "int",
    "validationIouThreshold": "int",
    "validationMetricType": "string",
    "warmupCosineLRCycles": "int",
    "warmupCosineLRWarmupEpochs": "int",
    "weightDecay": "int"
  },
  "primaryMetric": "string",
  "searchSpace": [
    {
      "amsGradient": "string",
      "augmentations": "string",
      "beta1": "string",
      "beta2": "string",
      "boxDetectionsPerImage": "string",
      "boxScoreThreshold": "string",
      "distributed": "string",
      "earlyStopping": "string",
      "earlyStoppingDelay": "string",
      "earlyStoppingPatience": "string",
      "enableOnnxNormalization": "string",
      "evaluationFrequency": "string",
      "gradientAccumulationStep": "string",
      "imageSize": "string",
      "layersToFreeze": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "maxSize": "string",
      "minSize": "string",
      "modelName": "string",
      "modelSize": "string",
      "momentum": "string",
      "multiScale": "string",
      "nesterov": "string",
      "nmsIouThreshold": "string",
      "numberOfEpochs": "string",
      "numberOfWorkers": "string",
      "optimizer": "string",
      "randomSeed": "string",
      "stepLRGamma": "string",
      "stepLRStepSize": "string",
      "tileGridSize": "string",
      "tileOverlapRatio": "string",
      "tilePredictionsNmsThreshold": "string",
      "trainingBatchSize": "string",
      "validationBatchSize": "string",
      "validationIouThreshold": "string",
      "validationMetricType": "string",
      "warmupCosineLRCycles": "string",
      "warmupCosineLRWarmupEpochs": "string",
      "weightDecay": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "ImageInstanceSegmentation",
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "validationDataSize": "int"
}

For ImageObjectDetection, use:

{
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "modelSettings": {
    "advancedSettings": "string",
    "amsGradient": "bool",
    "augmentations": "string",
    "beta1": "int",
    "beta2": "int",
    "boxDetectionsPerImage": "int",
    "boxScoreThreshold": "int",
    "checkpointFrequency": "int",
    "checkpointModel": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "pathOnCompute": "string",
      "uri": "string"
    },
    "checkpointRunId": "string",
    "distributed": "bool",
    "earlyStopping": "bool",
    "earlyStoppingDelay": "int",
    "earlyStoppingPatience": "int",
    "enableOnnxNormalization": "bool",
    "evaluationFrequency": "int",
    "gradientAccumulationStep": "int",
    "imageSize": "int",
    "layersToFreeze": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "logTrainingMetrics": "string",
    "logValidationLoss": "string",
    "maxSize": "int",
    "minSize": "int",
    "modelName": "string",
    "modelSize": "string",
    "momentum": "int",
    "multiScale": "bool",
    "nesterov": "bool",
    "nmsIouThreshold": "int",
    "numberOfEpochs": "int",
    "numberOfWorkers": "int",
    "optimizer": "string",
    "randomSeed": "int",
    "stepLRGamma": "int",
    "stepLRStepSize": "int",
    "tileGridSize": "string",
    "tileOverlapRatio": "int",
    "tilePredictionsNmsThreshold": "int",
    "trainingBatchSize": "int",
    "validationBatchSize": "int",
    "validationIouThreshold": "int",
    "validationMetricType": "string",
    "warmupCosineLRCycles": "int",
    "warmupCosineLRWarmupEpochs": "int",
    "weightDecay": "int"
  },
  "primaryMetric": "string",
  "searchSpace": [
    {
      "amsGradient": "string",
      "augmentations": "string",
      "beta1": "string",
      "beta2": "string",
      "boxDetectionsPerImage": "string",
      "boxScoreThreshold": "string",
      "distributed": "string",
      "earlyStopping": "string",
      "earlyStoppingDelay": "string",
      "earlyStoppingPatience": "string",
      "enableOnnxNormalization": "string",
      "evaluationFrequency": "string",
      "gradientAccumulationStep": "string",
      "imageSize": "string",
      "layersToFreeze": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "maxSize": "string",
      "minSize": "string",
      "modelName": "string",
      "modelSize": "string",
      "momentum": "string",
      "multiScale": "string",
      "nesterov": "string",
      "nmsIouThreshold": "string",
      "numberOfEpochs": "string",
      "numberOfWorkers": "string",
      "optimizer": "string",
      "randomSeed": "string",
      "stepLRGamma": "string",
      "stepLRStepSize": "string",
      "tileGridSize": "string",
      "tileOverlapRatio": "string",
      "tilePredictionsNmsThreshold": "string",
      "trainingBatchSize": "string",
      "validationBatchSize": "string",
      "validationIouThreshold": "string",
      "validationMetricType": "string",
      "warmupCosineLRCycles": "string",
      "warmupCosineLRWarmupEpochs": "string",
      "weightDecay": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "ImageObjectDetection",
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "validationDataSize": "int"
}

For Regression, use:

{
  "cvSplitColumnNames": [ "string" ],
  "featurizationSettings": {
    "blockedTransformers": [ "string" ],
    "columnNameAndTypes": {
      "{customized property}": "string"
    },
    "datasetLanguage": "string",
    "enableDnnFeaturization": "bool",
    "mode": "string",
    "transformerParams": {
      "{customized property}": [
        {
          "fields": [ "string" ],
          "parameters": {}
        }
      ]
    }
  },
  "fixedParameters": {
    "booster": "string",
    "boostingType": "string",
    "growPolicy": "string",
    "learningRate": "int",
    "maxBin": "int",
    "maxDepth": "int",
    "maxLeaves": "int",
    "minDataInLeaf": "int",
    "minSplitGain": "int",
    "modelName": "string",
    "nEstimators": "int",
    "numLeaves": "int",
    "preprocessorName": "string",
    "regAlpha": "int",
    "regLambda": "int",
    "subsample": "int",
    "subsampleFreq": "int",
    "treeMethod": "string",
    "withMean": "bool",
    "withStd": "bool"
  },
  "limitSettings": {
    "enableEarlyTermination": "bool",
    "exitScore": "int",
    "maxConcurrentTrials": "int",
    "maxCoresPerTrial": "int",
    "maxNodes": "int",
    "maxTrials": "int",
    "sweepConcurrentTrials": "int",
    "sweepTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "nCrossValidations": {
    "mode": "string"
    // For remaining properties, see NCrossValidations objects
  },
  "primaryMetric": "string",
  "searchSpace": [
    {
      "booster": "string",
      "boostingType": "string",
      "growPolicy": "string",
      "learningRate": "string",
      "maxBin": "string",
      "maxDepth": "string",
      "maxLeaves": "string",
      "minDataInLeaf": "string",
      "minSplitGain": "string",
      "modelName": "string",
      "nEstimators": "string",
      "numLeaves": "string",
      "preprocessorName": "string",
      "regAlpha": "string",
      "regLambda": "string",
      "subsample": "string",
      "subsampleFreq": "string",
      "treeMethod": "string",
      "withMean": "string",
      "withStd": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "Regression",
  "testData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "testDataSize": "int",
  "trainingSettings": {
    "allowedTrainingAlgorithms": [ "string" ],
    "blockedTrainingAlgorithms": [ "string" ],
    "enableDnnTraining": "bool",
    "enableModelExplainability": "bool",
    "enableOnnxCompatibleModels": "bool",
    "enableStackEnsemble": "bool",
    "enableVoteEnsemble": "bool",
    "ensembleModelDownloadTimeout": "string",
    "stackEnsembleSettings": {
      "stackMetaLearnerKWargs": {},
      "stackMetaLearnerTrainPercentage": "int",
      "stackMetaLearnerType": "string"
    },
    "trainingMode": "string"
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  },
  "validationDataSize": "int",
  "weightColumnName": "string"
}

For TextClassification, use:

{
  "featurizationSettings": {
    "datasetLanguage": "string"
  },
  "fixedParameters": {
    "gradientAccumulationSteps": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "modelName": "string",
    "numberOfEpochs": "int",
    "trainingBatchSize": "int",
    "validationBatchSize": "int",
    "warmupRatio": "int",
    "weightDecay": "int"
  },
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxNodes": "int",
    "maxTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "primaryMetric": "string",
  "searchSpace": [
    {
      "gradientAccumulationSteps": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "modelName": "string",
      "numberOfEpochs": "string",
      "trainingBatchSize": "string",
      "validationBatchSize": "string",
      "warmupRatio": "string",
      "weightDecay": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "TextClassification",
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  }
}

For TextClassificationMultilabel, use:

{
  "featurizationSettings": {
    "datasetLanguage": "string"
  },
  "fixedParameters": {
    "gradientAccumulationSteps": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "modelName": "string",
    "numberOfEpochs": "int",
    "trainingBatchSize": "int",
    "validationBatchSize": "int",
    "warmupRatio": "int",
    "weightDecay": "int"
  },
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxNodes": "int",
    "maxTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "searchSpace": [
    {
      "gradientAccumulationSteps": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "modelName": "string",
      "numberOfEpochs": "string",
      "trainingBatchSize": "string",
      "validationBatchSize": "string",
      "warmupRatio": "string",
      "weightDecay": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "TextClassificationMultilabel",
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  }
}

For TextNER, use:

{
  "featurizationSettings": {
    "datasetLanguage": "string"
  },
  "fixedParameters": {
    "gradientAccumulationSteps": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "modelName": "string",
    "numberOfEpochs": "int",
    "trainingBatchSize": "int",
    "validationBatchSize": "int",
    "warmupRatio": "int",
    "weightDecay": "int"
  },
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxNodes": "int",
    "maxTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "searchSpace": [
    {
      "gradientAccumulationSteps": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "modelName": "string",
      "numberOfEpochs": "string",
      "trainingBatchSize": "string",
      "validationBatchSize": "string",
      "warmupRatio": "string",
      "weightDecay": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "taskType": "TextNER",
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "pathOnCompute": "string",
    "uri": "string"
  }
}

LabelingJobMediaProperties objects

Set the mediaType property to specify the type of object.

For Image, use:

{
  "annotationType": "string",
  "mediaType": "Image"
}

For Text, use:

{
  "annotationType": "string",
  "mediaType": "Text"
}

DistributionConfiguration objects

Set the distributionType property to specify the type of object.

For Mpi, use:

{
  "distributionType": "Mpi",
  "processCountPerInstance": "int"
}

For PyTorch, use:

{
  "distributionType": "PyTorch",
  "processCountPerInstance": "int"
}

For Ray, use:

{
  "address": "string",
  "dashboardPort": "int",
  "distributionType": "Ray",
  "headNodeAdditionalArgs": "string",
  "includeDashboard": "bool",
  "port": "int",
  "workerNodeAdditionalArgs": "string"
}

For TensorFlow, use:

{
  "distributionType": "TensorFlow",
  "parameterServerCount": "int",
  "workerCount": "int"
}

NCrossValidations objects

Set the mode property to specify the type of object.

For Auto, use:

{
  "mode": "Auto"
}

For Custom, use:

{
  "mode": "Custom",
  "value": "int"
}

TargetLags objects

Set the mode property to specify the type of object.

For Auto, use:

{
  "mode": "Auto"
}

For Custom, use:

{
  "mode": "Custom",
  "values": [ "int" ]
}

MonitorComputeIdentityBase objects

Set the computeIdentityType property to specify the type of object.

For AmlToken, use:

{
  "computeIdentityType": "AmlToken"
}

For ManagedIdentity, use:

{
  "computeIdentityType": "ManagedIdentity",
  "identity": {
    "type": "string",
    "userAssignedIdentities": {
      "{customized property}": {
      }
    }
  }
}

EarlyTerminationPolicy objects

Set the policyType property to specify the type of object.

For Bandit, use:

{
  "policyType": "Bandit",
  "slackAmount": "int",
  "slackFactor": "int"
}

For MedianStopping, use:

{
  "policyType": "MedianStopping"
}

For TruncationSelection, use:

{
  "policyType": "TruncationSelection",
  "truncationPercentage": "int"
}

JobOutput objects

Set the jobOutputType property to specify the type of object.

For custom_model, use:

{
  "assetName": "string",
  "assetVersion": "string",
  "autoDeleteSetting": {
    "condition": "string",
    "value": "string"
  },
  "jobOutputType": "custom_model",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For mlflow_model, use:

{
  "assetName": "string",
  "assetVersion": "string",
  "autoDeleteSetting": {
    "condition": "string",
    "value": "string"
  },
  "jobOutputType": "mlflow_model",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For mltable, use:

{
  "assetName": "string",
  "assetVersion": "string",
  "autoDeleteSetting": {
    "condition": "string",
    "value": "string"
  },
  "jobOutputType": "mltable",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For triton_model, use:

{
  "assetName": "string",
  "assetVersion": "string",
  "autoDeleteSetting": {
    "condition": "string",
    "value": "string"
  },
  "jobOutputType": "triton_model",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For uri_file, use:

{
  "assetName": "string",
  "assetVersion": "string",
  "autoDeleteSetting": {
    "condition": "string",
    "value": "string"
  },
  "jobOutputType": "uri_file",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For uri_folder, use:

{
  "assetName": "string",
  "assetVersion": "string",
  "autoDeleteSetting": {
    "condition": "string",
    "value": "string"
  },
  "jobOutputType": "uri_folder",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

MonitoringInputDataBase objects

Set the inputDataType property to specify the type of object.

For Fixed, use:

{
  "inputDataType": "Fixed"
}

For Rolling, use:

{
  "inputDataType": "Rolling",
  "preprocessingComponentId": "string",
  "windowOffset": "string",
  "windowSize": "string"
}

For Static, use:

{
  "inputDataType": "Static",
  "preprocessingComponentId": "string",
  "windowEnd": "string",
  "windowStart": "string"
}

SparkJobEntry objects

Set the sparkJobEntryType property to specify the type of object.

For SparkJobPythonEntry, use:

{
  "file": "string",
  "sparkJobEntryType": "SparkJobPythonEntry"
}

For SparkJobScalaEntry, use:

{
  "className": "string",
  "sparkJobEntryType": "SparkJobScalaEntry"
}

Webhook objects

Set the webhookType property to specify the type of object.

For AzureDevOps, use:

{
  "webhookType": "AzureDevOps"
}

IdentityConfiguration objects

Set the identityType property to specify the type of object.

For AMLToken, use:

{
  "identityType": "AMLToken"
}

For Managed, use:

{
  "clientId": "string",
  "identityType": "Managed",
  "objectId": "string",
  "resourceId": "string"
}

For UserIdentity, use:

{
  "identityType": "UserIdentity"
}

ScheduleActionBase objects

Set the actionType property to specify the type of object.

For CreateJob, use:

{
  "actionType": "CreateJob",
  "jobDefinition": {
    "componentId": "string",
    "computeId": "string",
    "description": "string",
    "displayName": "string",
    "experimentName": "string",
    "identity": {
      "identityType": "string"
      // For remaining properties, see IdentityConfiguration objects
    },
    "isArchived": "bool",
    "notificationSetting": {
      "emailOn": [ "string" ],
      "emails": [ "string" ],
      "webhooks": {
        "{customized property}": {
          "eventType": "string",
          "webhookType": "string"
          // For remaining properties, see Webhook objects
        }
      }
    },
    "properties": {
      "{customized property}": "string"
    },
    "secretsConfiguration": {
      "{customized property}": {
        "uri": "string",
        "workspaceSecretName": "string"
      }
    },
    "services": {
      "{customized property}": {
        "endpoint": "string",
        "jobServiceType": "string",
        "nodes": {
          "nodesValueType": "string"
          // For remaining properties, see Nodes objects
        },
        "port": "int",
        "properties": {
          "{customized property}": "string"
        }
      }
    },
    "tags": {
      "{customized property}": "string"
    },
    "jobType": "string"
    // For remaining properties, see JobBaseProperties objects
  }
}

For CreateMonitor, use:

{
  "actionType": "CreateMonitor",
  "monitorDefinition": {
    "alertNotificationSettings": {
      "emailNotificationSettings": {
        "emails": [ "string" ]
      }
    },
    "computeConfiguration": {
      "computeType": "string"
      // For remaining properties, see MonitorComputeConfigurationBase objects
    },
    "monitoringTarget": {
      "deploymentId": "string",
      "modelId": "string",
      "taskType": "string"
    },
    "signals": {
      "{customized property}": {
        "notificationTypes": [ "string" ],
        "properties": {
          "{customized property}": "string"
        },
        "signalType": "string"
        // For remaining properties, see MonitoringSignalBase objects
      }
    }
  }
}

For ImportData, use:

{
  "actionType": "ImportData",
  "dataImportDefinition": {
    "assetName": "string",
    "autoDeleteSetting": {
      "condition": "string",
      "value": "string"
    },
    "dataType": "string",
    "dataUri": "string",
    "description": "string",
    "intellectualProperty": {
      "protectionLevel": "string",
      "publisher": "string"
    },
    "isAnonymous": "bool",
    "isArchived": "bool",
    "properties": {
      "{customized property}": "string"
    },
    "source": {
      "connection": "string",
      "sourceType": "string"
      // For remaining properties, see DataImportSource objects
    },
    "stage": "string",
    "tags": {
      "{customized property}": "string"
    }
  }
}

For InvokeBatchEndpoint, use:

{
  "actionType": "InvokeBatchEndpoint",
  "endpointInvocationDefinition": {}
}

ModelPerformanceMetricThresholdBase objects

Set the modelType property to specify the type of object.

For Classification, use:

{
  "metric": "string",
  "modelType": "Classification"
}

For Regression, use:

{
  "metric": "string",
  "modelType": "Regression"
}

DataQualityMetricThresholdBase objects

Set the dataType property to specify the type of object.

For Categorical, use:

{
  "dataType": "Categorical",
  "metric": "string"
}

For Numerical, use:

{
  "dataType": "Numerical",
  "metric": "string"
}

SamplingAlgorithm objects

Set the samplingAlgorithmType property to specify the type of object.

For Bayesian, use:

{
  "samplingAlgorithmType": "Bayesian"
}

For Grid, use:

{
  "samplingAlgorithmType": "Grid"
}

For Random, use:

{
  "logbase": "string",
  "rule": "string",
  "samplingAlgorithmType": "Random",
  "seed": "int"
}

FineTuningVertical objects

Set the modelProvider property to specify the type of object.

For AzureOpenAI, use:

{
  "hyperParameters": {
    "batchSize": "int",
    "learningRateMultiplier": "int",
    "nEpochs": "int"
  },
  "modelProvider": "AzureOpenAI"
}

For Custom, use:

{
  "hyperParameters": {
    "{customized property}": "string"
  },
  "modelProvider": "Custom"
}

MonitoringSignalBase objects

Set the signalType property to specify the type of object.

For Custom, use:

{
  "componentId": "string",
  "inputAssets": {
    "{customized property}": {
      "columns": {
        "{customized property}": "string"
      },
      "dataContext": "string",
      "jobInputType": "string",
      "uri": "string",
      "inputDataType": "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  },
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "metricThresholds": [
    {
      "metric": "string",
      "threshold": {
        "value": "int"
      }
    }
  ],
  "signalType": "Custom",
  "workspaceConnection": {
    "environmentVariables": {
      "{customized property}": "string"
    },
    "secrets": {
      "{customized property}": "string"
    }
  }
}

For DataDrift, use:

{
  "dataSegment": {
    "feature": "string",
    "values": [ "string" ]
  },
  "featureDataTypeOverride": {
    "{customized property}": "string"
  },
  "featureImportanceSettings": {
    "mode": "string",
    "targetColumn": "string"
  },
  "features": {
    "filterType": "string"
    // For remaining properties, see MonitoringFeatureFilterBase objects
  },
  "metricThresholds": [ {
    "threshold": {
      "value": "int"
    },
    "dataType": "string"
    // For remaining properties, see DataDriftMetricThresholdBase objects
  } ],
  "productionData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "referenceData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "signalType": "DataDrift"
}

For DataQuality, use:

{
  "featureDataTypeOverride": {
    "{customized property}": "string"
  },
  "featureImportanceSettings": {
    "mode": "string",
    "targetColumn": "string"
  },
  "features": {
    "filterType": "string"
    // For remaining properties, see MonitoringFeatureFilterBase objects
  },
  "metricThresholds": [ {
    "threshold": {
      "value": "int"
    },
    "dataType": "string"
    // For remaining properties, see DataQualityMetricThresholdBase objects
  } ],
  "productionData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "referenceData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "signalType": "DataQuality"
}

For FeatureAttributionDrift, use:

{
  "featureDataTypeOverride": {
    "{customized property}": "string"
  },
  "featureImportanceSettings": {
    "mode": "string",
    "targetColumn": "string"
  },
  "metricThreshold": {
    "metric": "string",
    "threshold": {
      "value": "int"
    }
  },
  "productionData": [ {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  } ],
  "referenceData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "signalType": "FeatureAttributionDrift"
}

For GenerationSafetyQuality, use:

{
  "metricThresholds": [
    {
      "metric": "string",
      "threshold": {
        "value": "int"
      }
    }
  ],
  "productionData": [ {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  } ],
  "samplingRate": "int",
  "signalType": "GenerationSafetyQuality",
  "workspaceConnectionId": "string"
}

For GenerationTokenStatistics, use:

{
  "metricThresholds": [
    {
      "metric": "string",
      "threshold": {
        "value": "int"
      }
    }
  ],
  "productionData": [ {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  } ],
  "samplingRate": "int",
  "signalType": "GenerationTokenStatistics"
}

For ModelPerformance, use:

{
  "dataSegment": {
    "feature": "string",
    "values": [ "string" ]
  },
  "metricThreshold": {
    "threshold": {
      "value": "int"
    },
    "modelType": "string"
    // For remaining properties, see ModelPerformanceMetricThresholdBase objects
  },
  "productionData": [ {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  } ],
  "referenceData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "signalType": "ModelPerformance"
}

For PredictionDrift, use:

{
  "featureDataTypeOverride": {
    "{customized property}": "string"
  },
  "metricThresholds": [ {
    "threshold": {
      "value": "int"
    },
    "dataType": "string"
    // For remaining properties, see PredictionDriftMetricThresholdBase objects
  } ],
  "productionData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "referenceData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "signalType": "PredictionDrift"
}

DataDriftMetricThresholdBase objects

Set the dataType property to specify the type of object.

For Categorical, use:

{
  "dataType": "Categorical",
  "metric": "string"
}

For Numerical, use:

{
  "dataType": "Numerical",
  "metric": "string"
}

JobInput objects

Set the jobInputType property to specify the type of object.

For custom_model, use:

{
  "jobInputType": "custom_model",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For literal, use:

{
  "jobInputType": "literal",
  "value": "string"
}

For mlflow_model, use:

{
  "jobInputType": "mlflow_model",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For mltable, use:

{
  "jobInputType": "mltable",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For triton_model, use:

{
  "jobInputType": "triton_model",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For uri_file, use:

{
  "jobInputType": "uri_file",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

For uri_folder, use:

{
  "jobInputType": "uri_folder",
  "mode": "string",
  "pathOnCompute": "string",
  "uri": "string"
}

Seasonality objects

Set the mode property to specify the type of object.

For Auto, use:

{
  "mode": "Auto"
}

For Custom, use:

{
  "mode": "Custom",
  "value": "int"
}

TargetRollingWindowSize objects

Set the mode property to specify the type of object.

For Auto, use:

{
  "mode": "Auto"
}

For Custom, use:

{
  "mode": "Custom",
  "value": "int"
}

MonitorComputeConfigurationBase objects

Set the computeType property to specify the type of object.

For ServerlessSpark, use:

{
  "computeIdentity": {
    "computeIdentityType": "string"
    // For remaining properties, see MonitorComputeIdentityBase objects
  },
  "computeType": "ServerlessSpark",
  "instanceType": "string",
  "runtimeVersion": "string"
}

DataImportSource objects

Set the sourceType property to specify the type of object.

For database, use:

{
  "query": "string",
  "sourceType": "database",
  "storedProcedure": "string",
  "storedProcedureParams": [
    {
      "{customized property}": "string"
    }
  ],
  "tableName": "string"
}

For file_system, use:

{
  "path": "string",
  "sourceType": "file_system"
}

MonitoringFeatureFilterBase objects

Set the filterType property to specify the type of object.

For AllFeatures, use:

{
  "filterType": "AllFeatures"
}

For FeatureSubset, use:

{
  "features": [ "string" ],
  "filterType": "FeatureSubset"
}

For TopNByAttribution, use:

{
  "filterType": "TopNByAttribution",
  "top": "int"
}

PredictionDriftMetricThresholdBase objects

Set the dataType property to specify the type of object.

For Categorical, use:

{
  "dataType": "Categorical",
  "metric": "string"
}

For Numerical, use:

{
  "dataType": "Numerical",
  "metric": "string"
}

TriggerBase objects

Set the triggerType property to specify the type of object.

For Cron, use:

{
  "expression": "string",
  "triggerType": "Cron"
}

For Recurrence, use:

{
  "frequency": "string",
  "interval": "int",
  "schedule": {
    "hours": [ "int" ],
    "minutes": [ "int" ],
    "monthDays": [ "int" ],
    "weekDays": [ "string" ]
  },
  "triggerType": "Recurrence"
}

ForecastHorizon objects

Set the mode property to specify the type of object.

For Auto, use:

{
  "mode": "Auto"
}

For Custom, use:

{
  "mode": "Custom",
  "value": "int"
}

Nodes objects

Set the nodesValueType property to specify the type of object.

For All, use:

{
  "nodesValueType": "All"
}

Property values

AllFeatures

Name Description Value
filterType [Required] Specifies the feature filter to leverage when selecting features to calculate metrics over. 'AllFeatures' (required)

AllNodes

Name Description Value
nodesValueType [Required] Type of the Nodes value 'All' (required)

AmlToken

Name Description Value
identityType [Required] Specifies the type of identity framework. 'AMLToken' (required)

AmlTokenComputeIdentity

Name Description Value
computeIdentityType [Required] Monitor compute identity type enum. 'AmlToken' (required)

AutoDeleteSetting

Name Description Value
condition When to check if an asset is expired 'CreatedGreaterThan'
'LastAccessedGreaterThan'
value Expiration condition value. string

AutoForecastHorizon

Name Description Value
mode [Required] Set forecast horizon value selection mode. 'Auto' (required)

AutologgerSettings

Name Description Value
mlflowAutologger [Required] Indicates whether mlflow autologger is enabled. 'Disabled'
'Enabled' (required)

AutoMLJob

Name Description Value
environmentId The ARM resource ID of the Environment specification for the job.
This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job.
string
environmentVariables Environment variables included in the job. AutoMLJobEnvironmentVariables
jobType [Required] Specifies the type of job. 'AutoML' (required)
outputs Mapping of output data bindings used in the job. AutoMLJobOutputs
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. JobResourceConfiguration
taskDetails [Required] This represents scenario which can be one of Tables/NLP/Image AutoMLVertical (required)

AutoMLJobEnvironmentVariables

Name Description Value

AutoMLJobOutputs

Name Description Value

AutoMLVertical

Name Description Value
logVerbosity Log verbosity for the job. 'Critical'
'Debug'
'Error'
'Info'
'NotSet'
'Warning'
targetColumnName Target column name: This is prediction values column.
Also known as label column name in context of classification tasks.
string
taskType Set to 'Classification' for type Classification. Set to 'Forecasting' for type Forecasting. Set to 'ImageClassification' for type ImageClassification. Set to 'ImageClassificationMultilabel' for type ImageClassificationMultilabel. Set to 'ImageInstanceSegmentation' for type ImageInstanceSegmentation. Set to 'ImageObjectDetection' for type ImageObjectDetection. Set to 'Regression' for type Regression. Set to 'TextClassification' for type TextClassification. Set to 'TextClassificationMultilabel' for type TextClassificationMultilabel. Set to 'TextNER' for type TextNer. 'Classification'
'Forecasting'
'ImageClassification'
'ImageClassificationMultilabel'
'ImageInstanceSegmentation'
'ImageObjectDetection'
'Regression'
'TextClassification'
'TextClassificationMultilabel'
'TextNER' (required)
trainingData [Required] Training data input. MLTableJobInput (required)

AutoNCrossValidations

Name Description Value
mode [Required] Mode for determining N-Cross validations. 'Auto' (required)

AutoSeasonality

Name Description Value
mode [Required] Seasonality mode. 'Auto' (required)

AutoTargetLags

Name Description Value
mode [Required] Set target lags mode - Auto/Custom 'Auto' (required)

AutoTargetRollingWindowSize

Name Description Value
mode [Required] TargetRollingWindowSiz detection mode. 'Auto' (required)

AzureDevOpsWebhook

Name Description Value
webhookType [Required] Specifies the type of service to send a callback 'AzureDevOps' (required)

AzureOpenAiFineTuning

Name Description Value
hyperParameters HyperParameters for fine tuning Azure Open AI model. AzureOpenAiHyperParameters
modelProvider [Required] Enum to determine the type of fine tuning. 'AzureOpenAI' (required)

AzureOpenAiHyperParameters

Name Description Value
batchSize Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance. int
learningRateMultiplier Scaling factor for the learning rate. A smaller learning rate may be useful to avoid over fitting. int
nEpochs The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset. int

BanditPolicy

Name Description Value
policyType [Required] Name of policy configuration 'Bandit' (required)
slackAmount Absolute distance allowed from the best performing run. int
slackFactor Ratio of the allowed distance from the best performing run. int

BayesianSamplingAlgorithm

Name Description Value
samplingAlgorithmType [Required] The algorithm used for generating hyperparameter values, along with configuration properties 'Bayesian' (required)

CategoricalDataDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Categorical' (required)
metric [Required] The categorical data drift metric to calculate. 'JensenShannonDistance'
'PearsonsChiSquaredTest'
'PopulationStabilityIndex' (required)

CategoricalDataQualityMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Categorical' (required)
metric [Required] The categorical data quality metric to calculate. 'DataTypeErrorRate'
'NullValueRate'
'OutOfBoundsRate' (required)

CategoricalPredictionDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Categorical' (required)
metric [Required] The categorical prediction drift metric to calculate. 'JensenShannonDistance'
'PearsonsChiSquaredTest'
'PopulationStabilityIndex' (required)

Classification

Name Description Value
cvSplitColumnNames Columns to use for CVSplit data. string[]
featurizationSettings Featurization inputs needed for AutoML job. TableVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. TableFixedParameters
limitSettings Execution constraints for AutoMLJob. TableVerticalLimitSettings
nCrossValidations Number of cross validation folds to be applied on training dataset
when validation dataset is not provided.
NCrossValidations
positiveLabel Positive label for binary metrics calculation. string
primaryMetric Primary metric for the task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. TableParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. TableSweepSettings
taskType [Required] Task type for AutoMLJob. 'Classification' (required)
testData Test data input. MLTableJobInput
testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
trainingSettings Inputs for training phase for an AutoML Job. ClassificationTrainingSettings
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. string

ClassificationModelPerformanceMetricThreshold

Name Description Value
metric [Required] The classification model performance to calculate. 'Accuracy'
'Precision'
'Recall' (required)
modelType [Required] Specifies the data type of the metric threshold. 'Classification' (required)

ClassificationTrainingSettings

Name Description Value
allowedTrainingAlgorithms Allowed models for classification task. String array containing any of:
'BernoulliNaiveBayes'
'DecisionTree'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LightGBM'
'LinearSVM'
'LogisticRegression'
'MultinomialNaiveBayes'
'RandomForest'
'SGD'
'SVM'
'XGBoostClassifier'
blockedTrainingAlgorithms Blocked models for classification task. String array containing any of:
'BernoulliNaiveBayes'
'DecisionTree'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LightGBM'
'LinearSVM'
'LogisticRegression'
'MultinomialNaiveBayes'
'RandomForest'
'SGD'
'SVM'
'XGBoostClassifier'
enableDnnTraining Enable recommendation of DNN models. bool
enableModelExplainability Flag to turn on explainability on best model. bool
enableOnnxCompatibleModels Flag for enabling onnx compatible models. bool
enableStackEnsemble Enable stack ensemble run. bool
enableVoteEnsemble Enable voting ensemble run. bool
ensembleModelDownloadTimeout During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
Configure this parameter with a higher value than 300 secs, if more time is needed.
string
stackEnsembleSettings Stack ensemble settings for stack ensemble run. StackEnsembleSettings
trainingMode TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'.
If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen.
If 'NonDistributed' then only non distributed algorithms are chosen.
'Auto'
'Distributed'
'NonDistributed'

ColumnTransformer

Name Description Value
fields Fields to apply transformer logic on. string[]
parameters Different properties to be passed to transformer.
Input expected is dictionary of key,value pairs in JSON format.
any

CommandJob

Name Description Value
autologgerSettings Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. AutologgerSettings
codeId ARM resource ID of the code asset. string
command [Required] The command to execute on startup of the job. eg. "python train.py" string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
distribution Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, Ray, or null. DistributionConfiguration
environmentId [Required] The ARM resource ID of the Environment specification for the job. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
environmentVariables Environment variables included in the job. CommandJobEnvironmentVariables
inputs Mapping of input data bindings used in the job. CommandJobInputs
jobType [Required] Specifies the type of job. 'Command' (required)
limits Command Job limit. CommandJobLimits
outputs Mapping of output data bindings used in the job. CommandJobOutputs
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. JobResourceConfiguration

CommandJobEnvironmentVariables

Name Description Value

CommandJobInputs

Name Description Value

CommandJobLimits

Name Description Value
jobLimitsType [Required] JobLimit type. 'Command'
'Sweep' (required)
timeout The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. string

CommandJobOutputs

Name Description Value

ComponentConfiguration

Name Description Value
pipelineSettings Pipeline settings, for things like ContinueRunOnStepFailure etc. any

CreateMonitorAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'CreateMonitor' (required)
monitorDefinition [Required] Defines the monitor. MonitorDefinition (required)

CronTrigger

Name Description Value
expression [Required] Specifies cron expression of schedule.
The expression should follow NCronTab format.
string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
triggerType [Required] 'Cron' (required)

CustomForecastHorizon

Name Description Value
mode [Required] Set forecast horizon value selection mode. 'Custom' (required)
value [Required] Forecast horizon value. int (required)

CustomMetricThreshold

Name Description Value
metric [Required] The user-defined metric to calculate. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

CustomModelFineTuning

Name Description Value
hyperParameters HyperParameters for fine tuning custom model. CustomModelFineTuningHyperParameters
modelProvider [Required] Enum to determine the type of fine tuning. 'Custom' (required)

CustomModelFineTuningHyperParameters

Name Description Value

CustomModelJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'custom_model' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

CustomModelJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'custom_model' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

CustomMonitoringSignal

Name Description Value
componentId [Required] ARM resource ID of the component resource used to calculate the custom metrics. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
inputAssets Monitoring assets to take as input. Key is the component input port name, value is the data asset. CustomMonitoringSignalInputAssets
inputs Extra component parameters to take as input. Key is the component literal input port name, value is the parameter value. CustomMonitoringSignalInputs
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. CustomMetricThreshold[] (required)
signalType [Required] Specifies the type of signal to monitor. 'Custom' (required)
workspaceConnection A list of metrics to calculate and their associated thresholds. MonitoringWorkspaceConnection

CustomMonitoringSignalInputAssets

Name Description Value

CustomMonitoringSignalInputs

Name Description Value

CustomNCrossValidations

Name Description Value
mode [Required] Mode for determining N-Cross validations. 'Custom' (required)
value [Required] N-Cross validations value. int (required)

CustomSeasonality

Name Description Value
mode [Required] Seasonality mode. 'Custom' (required)
value [Required] Seasonality value. int (required)

CustomTargetLags

Name Description Value
mode [Required] Set target lags mode - Auto/Custom 'Custom' (required)
values [Required] Set target lags values. int[] (required)

CustomTargetRollingWindowSize

Name Description Value
mode [Required] TargetRollingWindowSiz detection mode. 'Custom' (required)
value [Required] TargetRollingWindowSize value. int (required)

DatabaseSource

Name Description Value
query SQL Query statement for data import Database source string
sourceType [Required] Specifies the type of data. 'database' (required)
storedProcedure SQL StoredProcedure on data import Database source string
storedProcedureParams SQL StoredProcedure parameters DatabaseSourceStoredProcedureParamsItem[]
tableName Name of the table on data import Database source string

DatabaseSourceStoredProcedureParamsItem

Name Description Value

DataDriftMetricThresholdBase

Name Description Value
dataType Set to 'Categorical' for type CategoricalDataDriftMetricThreshold. Set to 'Numerical' for type NumericalDataDriftMetricThreshold. 'Categorical'
'Numerical' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

DataDriftMonitoringSignal

Name Description Value
dataSegment The data segment used for scoping on a subset of the data population. MonitoringDataSegment
featureDataTypeOverride A dictionary that maps feature names to their respective data types. DataDriftMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings The settings for computing feature importance. FeatureImportanceSettings
features The feature filter which identifies which feature to calculate drift over. MonitoringFeatureFilterBase
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. DataDriftMetricThresholdBase[] (required)
productionData [Required] The data which drift will be calculated for. MonitoringInputDataBase (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'DataDrift' (required)

DataDriftMonitoringSignalFeatureDataTypeOverride

Name Description Value

DataImport

Name Description Value
assetName Name of the asset for data import job to create string
autoDeleteSetting Specifies the lifecycle setting of managed data asset. AutoDeleteSetting
dataType [Required] Specifies the type of data. 'mltable'
'uri_file'
'uri_folder' (required)
dataUri [Required] Uri of the data. Example: https://go.microsoft.com/fwlink/?linkid=2202330 string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
description The asset description text. string
intellectualProperty Intellectual Property details. Used if data is an Intellectual Property. IntellectualProperty
isAnonymous If the name version are system generated (anonymous registration). For types where Stage is defined, when Stage is provided it will be used to populate IsAnonymous bool
isArchived Is the asset archived? For types where Stage is defined, when Stage is provided it will be used to populate IsArchived bool
properties The asset property dictionary. ResourceBaseProperties
source Source data of the asset to import from DataImportSource
stage Stage in the data lifecycle assigned to this data asset string
tags Tag dictionary. Tags can be added, removed, and updated. ResourceBaseTags

DataImportSource

Name Description Value
connection Workspace connection for data import source storage string
sourceType Set to 'database' for type DatabaseSource. Set to 'file_system' for type FileSystemSource. 'database'
'file_system' (required)

DataQualityMetricThresholdBase

Name Description Value
dataType Set to 'Categorical' for type CategoricalDataQualityMetricThreshold. Set to 'Numerical' for type NumericalDataQualityMetricThreshold. 'Categorical'
'Numerical' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

DataQualityMonitoringSignal

Name Description Value
featureDataTypeOverride A dictionary that maps feature names to their respective data types. DataQualityMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings The settings for computing feature importance. FeatureImportanceSettings
features The features to calculate drift over. MonitoringFeatureFilterBase
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. DataQualityMetricThresholdBase[] (required)
productionData [Required] The data produced by the production service which drift will be calculated for. MonitoringInputDataBase (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'DataQuality' (required)

DataQualityMonitoringSignalFeatureDataTypeOverride

Name Description Value

DistributionConfiguration

Name Description Value
distributionType Set to 'Mpi' for type Mpi. Set to 'PyTorch' for type PyTorch. Set to 'Ray' for type Ray. Set to 'TensorFlow' for type TensorFlow. 'Mpi'
'PyTorch'
'Ray'
'TensorFlow' (required)

EarlyTerminationPolicy

Name Description Value
delayEvaluation Number of intervals by which to delay the first evaluation. int
evaluationInterval Interval (number of runs) between policy evaluations. int
policyType Set to 'Bandit' for type BanditPolicy. Set to 'MedianStopping' for type MedianStoppingPolicy. Set to 'TruncationSelection' for type TruncationSelectionPolicy. 'Bandit'
'MedianStopping'
'TruncationSelection' (required)

EndpointScheduleAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'InvokeBatchEndpoint' (required)
endpointInvocationDefinition [Required] Defines Schedule action definition details.
<see href="TBD" />
any (required)

FeatureAttributionDriftMonitoringSignal

Name Description Value
featureDataTypeOverride A dictionary that maps feature names to their respective data types. FeatureAttributionDriftMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings [Required] The settings for computing feature importance. FeatureImportanceSettings (required)
metricThreshold [Required] A list of metrics to calculate and their associated thresholds. FeatureAttributionMetricThreshold (required)
productionData [Required] The data which drift will be calculated for. MonitoringInputDataBase[] (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'FeatureAttributionDrift' (required)

FeatureAttributionDriftMonitoringSignalFeatureDataTypeOverride

Name Description Value

FeatureAttributionMetricThreshold

Name Description Value
metric [Required] The feature attribution metric to calculate. 'NormalizedDiscountedCumulativeGain' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

FeatureImportanceSettings

Name Description Value
mode The mode of operation for computing feature importance. 'Disabled'
'Enabled'
targetColumn The name of the target column within the input data asset. string

FeatureSubset

Name Description Value
features [Required] The list of features to include. string[] (required)
filterType [Required] Specifies the feature filter to leverage when selecting features to calculate metrics over. 'FeatureSubset' (required)

FileSystemSource

Name Description Value
path Path on data import FileSystem source string
sourceType [Required] Specifies the type of data. 'file_system' (required)

FineTuningJob

Name Description Value
fineTuningDetails [Required] FineTuningVertical (required)
jobType [Required] Specifies the type of job. 'FineTuning' (required)
outputs [Required] FineTuningJobOutputs (required)

FineTuningJobOutputs

Name Description Value

FineTuningVertical

Name Description Value
model [Required] Input model for fine tuning. MLFlowModelJobInput (required)
modelProvider Set to 'AzureOpenAI' for type AzureOpenAiFineTuning. Set to 'Custom' for type CustomModelFineTuning. 'AzureOpenAI'
'Custom' (required)
taskType [Required] Fine tuning task type. 'ChatCompletion'
'ImageClassification'
'ImageInstanceSegmentation'
'ImageObjectDetection'
'QuestionAnswering'
'TextClassification'
'TextCompletion'
'TextSummarization'
'TextTranslation'
'TokenClassification'
'VideoMultiObjectTracking' (required)
trainingData [Required] Training data for fine tuning. JobInput (required)
validationData Validation data for fine tuning. JobInput

FixedInputData

Name Description Value
inputDataType [Required] Specifies the type of signal to monitor. 'Fixed' (required)

ForecastHorizon

Name Description Value
mode Set to 'Auto' for type AutoForecastHorizon. Set to 'Custom' for type CustomForecastHorizon. 'Auto'
'Custom' (required)

Forecasting

Name Description Value
cvSplitColumnNames Columns to use for CVSplit data. string[]
featurizationSettings Featurization inputs needed for AutoML job. TableVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. TableFixedParameters
forecastingSettings Forecasting task specific inputs. ForecastingSettings
limitSettings Execution constraints for AutoMLJob. TableVerticalLimitSettings
nCrossValidations Number of cross validation folds to be applied on training dataset
when validation dataset is not provided.
NCrossValidations
primaryMetric Primary metric for forecasting task. 'NormalizedMeanAbsoluteError'
'NormalizedRootMeanSquaredError'
'R2Score'
'SpearmanCorrelation'
searchSpace Search space for sampling different combinations of models and their hyperparameters. TableParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. TableSweepSettings
taskType [Required] Task type for AutoMLJob. 'Forecasting' (required)
testData Test data input. MLTableJobInput
testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
trainingSettings Inputs for training phase for an AutoML Job. ForecastingTrainingSettings
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. string

ForecastingSettings

Name Description Value
countryOrRegionForHolidays Country or region for holidays for forecasting tasks.
These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.
string
cvStepSize Number of periods between the origin time of one CV fold and the next fold. For
example, if CVStepSize = 3 for daily data, the origin time for each fold will be
three days apart.
int
featureLags Flag for generating lags for the numeric features with 'auto' or null. 'Auto'
'None'
featuresUnknownAtForecastTime The feature columns that are available for training but unknown at the time of forecast/inference.
If features_unknown_at_forecast_time is not set, it is assumed that all the feature columns in the dataset are known at inference time.
string[]
forecastHorizon The desired maximum forecast horizon in units of time-series frequency. ForecastHorizon
frequency When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. string
seasonality Set time series seasonality as an integer multiple of the series frequency.
If seasonality is set to 'auto', it will be inferred.
Seasonality
shortSeriesHandlingConfig The parameter defining how if AutoML should handle short time series. 'Auto'
'Drop'
'None'
'Pad'
targetAggregateFunction The function to be used to aggregate the time series target column to conform to a user specified frequency.
If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".
'Max'
'Mean'
'Min'
'None'
'Sum'
targetLags The number of past periods to lag from the target column. TargetLags
targetRollingWindowSize The number of past periods used to create a rolling window average of the target column. TargetRollingWindowSize
timeColumnName The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. string
timeSeriesIdColumnNames The names of columns used to group a timeseries. It can be used to create multiple series.
If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting.
string[]
useStl Configure STL Decomposition of the time-series target column. 'None'
'Season'
'SeasonTrend'

ForecastingTrainingSettings

Name Description Value
allowedTrainingAlgorithms Allowed models for forecasting task. String array containing any of:
'Arimax'
'AutoArima'
'Average'
'DecisionTree'
'ElasticNet'
'ExponentialSmoothing'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'Naive'
'Prophet'
'RandomForest'
'SeasonalAverage'
'SeasonalNaive'
'SGD'
'TCNForecaster'
'XGBoostRegressor'
blockedTrainingAlgorithms Blocked models for forecasting task. String array containing any of:
'Arimax'
'AutoArima'
'Average'
'DecisionTree'
'ElasticNet'
'ExponentialSmoothing'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'Naive'
'Prophet'
'RandomForest'
'SeasonalAverage'
'SeasonalNaive'
'SGD'
'TCNForecaster'
'XGBoostRegressor'
enableDnnTraining Enable recommendation of DNN models. bool
enableModelExplainability Flag to turn on explainability on best model. bool
enableOnnxCompatibleModels Flag for enabling onnx compatible models. bool
enableStackEnsemble Enable stack ensemble run. bool
enableVoteEnsemble Enable voting ensemble run. bool
ensembleModelDownloadTimeout During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
Configure this parameter with a higher value than 300 secs, if more time is needed.
string
stackEnsembleSettings Stack ensemble settings for stack ensemble run. StackEnsembleSettings
trainingMode TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'.
If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen.
If 'NonDistributed' then only non distributed algorithms are chosen.
'Auto'
'Distributed'
'NonDistributed'

GenerationSafetyQualityMetricThreshold

Name Description Value
metric [Required] Gets or sets the feature attribution metric to calculate. 'AcceptableCoherenceScorePerInstance'
'AcceptableFluencyScorePerInstance'
'AcceptableGroundednessScorePerInstance'
'AcceptableRelevanceScorePerInstance'
'AcceptableSimilarityScorePerInstance'
'AggregatedCoherencePassRate'
'AggregatedFluencyPassRate'
'AggregatedGroundednessPassRate'
'AggregatedRelevancePassRate'
'AggregatedSimilarityPassRate' (required)
threshold Gets or sets the threshold value.
If null, a default value will be set depending on the selected metric.
MonitoringThreshold

GenerationSafetyQualityMonitoringSignal

Name Description Value
metricThresholds [Required] Gets or sets the metrics to calculate and the corresponding thresholds. GenerationSafetyQualityMetricThreshold[] (required)
productionData Gets or sets the production data for computing metrics. MonitoringInputDataBase[]
samplingRate [Required] The sample rate of the production data, should be greater than 0 and at most 1. int (required)
signalType [Required] Specifies the type of signal to monitor. 'GenerationSafetyQuality' (required)
workspaceConnectionId Gets or sets the workspace connection ID used to connect to the content generation endpoint. string

GenerationTokenUsageMetricThreshold

Name Description Value
metric [Required] Gets or sets the feature attribution metric to calculate. 'TotalTokenCount'
'TotalTokenCountPerGroup' (required)
threshold Gets or sets the threshold value.
If null, a default value will be set depending on the selected metric.
MonitoringThreshold

GenerationTokenUsageSignal

Name Description Value
metricThresholds [Required] Gets or sets the metrics to calculate and the corresponding thresholds. GenerationTokenUsageMetricThreshold[] (required)
productionData Gets or sets the production data for computing metrics. MonitoringInputDataBase[]
samplingRate [Required] The sample rate of the production data, should be greater than 0 and at most 1. int (required)
signalType [Required] Specifies the type of signal to monitor. 'GenerationTokenStatistics' (required)

GridSamplingAlgorithm

Name Description Value
samplingAlgorithmType [Required] The algorithm used for generating hyperparameter values, along with configuration properties 'Grid' (required)

IdentityConfiguration

Name Description Value
identityType Set to 'AMLToken' for type AmlToken. Set to 'Managed' for type ManagedIdentity. Set to 'UserIdentity' for type UserIdentity. 'AMLToken'
'Managed'
'UserIdentity' (required)

ImageClassification

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsClassification
primaryMetric Primary metric to optimize for this task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsClassification[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageClassification' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageClassificationMultilabel

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsClassification
primaryMetric Primary metric to optimize for this task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'IOU'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsClassification[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageClassificationMultilabel' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageInstanceSegmentation

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsObjectDetection
primaryMetric Primary metric to optimize for this task. 'MeanAveragePrecision'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageInstanceSegmentation' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageLimitSettings

Name Description Value
maxConcurrentTrials Maximum number of concurrent AutoML iterations. int
maxTrials Maximum number of AutoML iterations. int
timeout AutoML job timeout. string

ImageModelDistributionSettingsClassification

Name Description Value
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. string
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
distributed Whether to use distributer training. string
earlyStopping Enable early stopping logic during training. string
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
string
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
string
enableOnnxNormalization Enable normalization when exporting ONNX model. string
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. string
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
string
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
string
learningRate Initial learning rate. Must be a float in the range [0, 1]. string
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. string
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. string
nesterov Enable nesterov when optimizer is 'sgd'. string
numberOfEpochs Number of training epochs. Must be a positive integer. string
numberOfWorkers Number of data loader workers. Must be a non-negative integer. string
optimizer Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. string
randomSeed Random seed to be used when using deterministic training. string
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. string
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. string
trainingBatchSize Training batch size. Must be a positive integer. string
trainingCropSize Image crop size that is input to the neural network for the training dataset. Must be a positive integer. string
validationBatchSize Validation batch size. Must be a positive integer. string
validationCropSize Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. string
validationResizeSize Image size to which to resize before cropping for validation dataset. Must be a positive integer. string
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. string
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. string
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. string
weightedLoss Weighted loss. The accepted values are 0 for no weighted loss.
1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
string

ImageModelDistributionSettingsObjectDetection

Name Description Value
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. string
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
boxDetectionsPerImage Maximum number of detections per image, for all classes. Must be a positive integer.
Note: This settings is not supported for the 'yolov5' algorithm.
string
boxScoreThreshold During inference, only return proposals with a classification score greater than
BoxScoreThreshold. Must be a float in the range[0, 1].
string
distributed Whether to use distributer training. string
earlyStopping Enable early stopping logic during training. string
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
string
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
string
enableOnnxNormalization Enable normalization when exporting ONNX model. string
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. string
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
string
imageSize Image size for train and validation. Must be a positive integer.
Note: The training run may get into CUDA OOM if the size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
string
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
string
learningRate Initial learning rate. Must be a float in the range [0, 1]. string
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. string
maxSize Maximum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
string
minSize Minimum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
string
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
modelSize Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
Note: training run may get into CUDA OOM if the model size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
string
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. string
multiScale Enable multi-scale image by varying image size by +/- 50%.
Note: training run may get into CUDA OOM if no sufficient GPU memory.
Note: This settings is only supported for the 'yolov5' algorithm.
string
nesterov Enable nesterov when optimizer is 'sgd'. string
nmsIouThreshold IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. string
numberOfEpochs Number of training epochs. Must be a positive integer. string
numberOfWorkers Number of data loader workers. Must be a non-negative integer. string
optimizer Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. string
randomSeed Random seed to be used when using deterministic training. string
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. string
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. string
tileGridSize The grid size to use for tiling each image. Note: TileGridSize must not be
None to enable small object detection logic. A string containing two integers in mxn format.
Note: This settings is not supported for the 'yolov5' algorithm.
string
tileOverlapRatio Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
Note: This settings is not supported for the 'yolov5' algorithm.
string
tilePredictionsNmsThreshold The IOU threshold to use to perform NMS while merging predictions from tiles and image.
Used in validation/ inference. Must be float in the range [0, 1].
Note: This settings is not supported for the 'yolov5' algorithm.
NMS: Non-maximum suppression
string
trainingBatchSize Training batch size. Must be a positive integer. string
validationBatchSize Validation batch size. Must be a positive integer. string
validationIouThreshold IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. string
validationMetricType Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. string
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. string
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. string
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. string

ImageModelSettingsClassification

Name Description Value
advancedSettings Settings for advanced scenarios. string
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. bool
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
checkpointFrequency Frequency to store model checkpoints. Must be a positive integer. int
checkpointModel The pretrained checkpoint model for incremental training. MLFlowModelJobInput
checkpointRunId The id of a previous run that has a pretrained checkpoint for incremental training. string
distributed Whether to use distributed training. bool
earlyStopping Enable early stopping logic during training. bool
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
int
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
int
enableOnnxNormalization Enable normalization when exporting ONNX model. bool
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. int
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
int
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
int
learningRate Initial learning rate. Must be a float in the range [0, 1]. int
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. 'None'
'Step'
'WarmupCosine'
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. int
nesterov Enable nesterov when optimizer is 'sgd'. bool
numberOfEpochs Number of training epochs. Must be a positive integer. int
numberOfWorkers Number of data loader workers. Must be a non-negative integer. int
optimizer Type of optimizer. 'Adam'
'Adamw'
'None'
'Sgd'
randomSeed Random seed to be used when using deterministic training. int
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. int
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. int
trainingBatchSize Training batch size. Must be a positive integer. int
trainingCropSize Image crop size that is input to the neural network for the training dataset. Must be a positive integer. int
validationBatchSize Validation batch size. Must be a positive integer. int
validationCropSize Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. int
validationResizeSize Image size to which to resize before cropping for validation dataset. Must be a positive integer. int
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. int
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. int
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. int
weightedLoss Weighted loss. The accepted values are 0 for no weighted loss.
1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
int

ImageModelSettingsObjectDetection

Name Description Value
advancedSettings Settings for advanced scenarios. string
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. bool
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
boxDetectionsPerImage Maximum number of detections per image, for all classes. Must be a positive integer.
Note: This settings is not supported for the 'yolov5' algorithm.
int
boxScoreThreshold During inference, only return proposals with a classification score greater than
BoxScoreThreshold. Must be a float in the range[0, 1].
int
checkpointFrequency Frequency to store model checkpoints. Must be a positive integer. int
checkpointModel The pretrained checkpoint model for incremental training. MLFlowModelJobInput
checkpointRunId The id of a previous run that has a pretrained checkpoint for incremental training. string
distributed Whether to use distributed training. bool
earlyStopping Enable early stopping logic during training. bool
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
int
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
int
enableOnnxNormalization Enable normalization when exporting ONNX model. bool
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. int
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
int
imageSize Image size for train and validation. Must be a positive integer.
Note: The training run may get into CUDA OOM if the size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
int
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
int
learningRate Initial learning rate. Must be a float in the range [0, 1]. int
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. 'None'
'Step'
'WarmupCosine'
logTrainingMetrics Enable computing and logging training metrics. 'Disable'
'Enable'
logValidationLoss Enable computing and logging validation loss. 'Disable'
'Enable'
maxSize Maximum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
int
minSize Minimum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
int
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
modelSize Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
Note: training run may get into CUDA OOM if the model size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
'ExtraLarge'
'Large'
'Medium'
'None'
'Small'
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. int
multiScale Enable multi-scale image by varying image size by +/- 50%.
Note: training run may get into CUDA OOM if no sufficient GPU memory.
Note: This settings is only supported for the 'yolov5' algorithm.
bool
nesterov Enable nesterov when optimizer is 'sgd'. bool
nmsIouThreshold IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. int
numberOfEpochs Number of training epochs. Must be a positive integer. int
numberOfWorkers Number of data loader workers. Must be a non-negative integer. int
optimizer Type of optimizer. 'Adam'
'Adamw'
'None'
'Sgd'
randomSeed Random seed to be used when using deterministic training. int
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. int
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. int
tileGridSize The grid size to use for tiling each image. Note: TileGridSize must not be
None to enable small object detection logic. A string containing two integers in mxn format.
Note: This settings is not supported for the 'yolov5' algorithm.
string
tileOverlapRatio Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
Note: This settings is not supported for the 'yolov5' algorithm.
int
tilePredictionsNmsThreshold The IOU threshold to use to perform NMS while merging predictions from tiles and image.
Used in validation/ inference. Must be float in the range [0, 1].
Note: This settings is not supported for the 'yolov5' algorithm.
int
trainingBatchSize Training batch size. Must be a positive integer. int
validationBatchSize Validation batch size. Must be a positive integer. int
validationIouThreshold IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. int
validationMetricType Metric computation method to use for validation metrics. 'Coco'
'CocoVoc'
'None'
'Voc'
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. int
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. int
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. int

ImageObjectDetection

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsObjectDetection
primaryMetric Primary metric to optimize for this task. 'MeanAveragePrecision'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageObjectDetection' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageSweepSettings

Name Description Value
earlyTermination Type of early termination policy. EarlyTerminationPolicy
samplingAlgorithm [Required] Type of the hyperparameter sampling algorithms. 'Bayesian'
'Grid'
'Random' (required)

ImportDataAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'ImportData' (required)
dataImportDefinition [Required] Defines Schedule action definition details. DataImport (required)

IntellectualProperty

Name Description Value
protectionLevel Protection level of the Intellectual Property. 'All'
'None'
publisher [Required] Publisher of the Intellectual Property. Must be the same as Registry publisher name. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

JobBaseProperties

Name Description Value
componentId ARM resource ID of the component resource. string
computeId ARM resource ID of the compute resource. string
description The asset description text. string
displayName Display name of job. string
experimentName The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. string
identity Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null.
Defaults to AmlToken if null.
IdentityConfiguration
isArchived Is the asset archived? bool
jobType Set to 'AutoML' for type AutoMLJob. Set to 'Command' for type CommandJob. Set to 'FineTuning' for type FineTuningJob. Set to 'Labeling' for type LabelingJobProperties. Set to 'Pipeline' for type PipelineJob. Set to 'Spark' for type SparkJob. Set to 'Sweep' for type SweepJob. 'AutoML'
'Command'
'FineTuning'
'Labeling'
'Pipeline'
'Spark'
'Sweep' (required)
notificationSetting Notification setting for the job NotificationSetting
properties The asset property dictionary. ResourceBaseProperties
secretsConfiguration Configuration for secrets to be made available during runtime. JobBaseSecretsConfiguration
services List of JobEndpoints.
For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
JobBaseServices
tags Tag dictionary. Tags can be added, removed, and updated. ResourceBaseTags

JobBaseSecretsConfiguration

Name Description Value

JobBaseServices

Name Description Value

JobInput

Name Description Value
description Description for the input. string
jobInputType Set to 'custom_model' for type CustomModelJobInput. Set to 'literal' for type LiteralJobInput. Set to 'mlflow_model' for type MLFlowModelJobInput. Set to 'mltable' for type MLTableJobInput. Set to 'triton_model' for type TritonModelJobInput. Set to 'uri_file' for type UriFileJobInput. Set to 'uri_folder' for type UriFolderJobInput. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)

JobOutput

Name Description Value
description Description for the output. string
jobOutputType Set to 'custom_model' for type CustomModelJobOutput. Set to 'mlflow_model' for type MLFlowModelJobOutput. Set to 'mltable' for type MLTableJobOutput. Set to 'triton_model' for type TritonModelJobOutput. Set to 'uri_file' for type UriFileJobOutput. Set to 'uri_folder' for type UriFolderJobOutput. 'custom_model'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)

JobResourceConfiguration

Name Description Value
dockerArgs Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. string
instanceCount Optional number of instances or nodes used by the compute target. int
instanceType Optional type of VM used as supported by the compute target. string
locations Locations where the job can run. string[]
maxInstanceCount Optional max allowed number of instances or nodes to be used by the compute target.
For use with elastic training, currently supported by PyTorch distribution type only.
int
properties Additional properties bag. ResourceConfigurationProperties
shmSize Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). string

Constraints:
Pattern = \d+[bBkKmMgG]

JobScheduleAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'CreateJob' (required)
jobDefinition [Required] Defines Schedule action definition details. JobBaseProperties (required)

JobService

Name Description Value
endpoint Url for endpoint. string
jobServiceType Endpoint type. string
nodes Nodes that user would like to start the service on.
If Nodes is not set or set to null, the service will only be started on leader node.
Nodes
port Port for endpoint set by user. int
properties Additional properties to set on the endpoint. JobServiceProperties

JobServiceProperties

Name Description Value

LabelCategory

Name Description Value
classes Dictionary of label classes in this category. LabelCategoryClasses
displayName Display name of the label category. string
multiSelect Indicates whether it is allowed to select multiple classes in this category. 'Disabled'
'Enabled'

LabelCategoryClasses

Name Description Value

LabelClass

Name Description Value
displayName Display name of the label class. string
subclasses Dictionary of subclasses of the label class. LabelClassSubclasses

LabelClassSubclasses

Name Description Value

LabelingDataConfiguration

Name Description Value
dataId Resource Id of the data asset to perform labeling. string
incrementalDataRefresh Indicates whether to enable incremental data refresh. 'Disabled'
'Enabled'

LabelingJobImageProperties

Name Description Value
annotationType Annotation type of image labeling job. 'BoundingBox'
'Classification'
'InstanceSegmentation'
mediaType [Required] Media type of the job. 'Image' (required)

LabelingJobInstructions

Name Description Value
uri The link to a page with detailed labeling instructions for labelers. string

LabelingJobLabelCategories

Name Description Value

LabelingJobMediaProperties

Name Description Value
mediaType Set to 'Image' for type LabelingJobImageProperties. Set to 'Text' for type LabelingJobTextProperties. 'Image'
'Text' (required)

LabelingJobProperties

Name Description Value
dataConfiguration Configuration of data used in the job. LabelingDataConfiguration
jobInstructions Labeling instructions of the job. LabelingJobInstructions
jobType [Required] Specifies the type of job. 'Labeling' (required)
labelCategories Label categories of the job. LabelingJobLabelCategories
labelingJobMediaProperties Media type specific properties in the job. LabelingJobMediaProperties
mlAssistConfiguration Configuration of MLAssist feature in the job. MLAssistConfiguration

LabelingJobTextProperties

Name Description Value
annotationType Annotation type of text labeling job. 'Classification'
'NamedEntityRecognition'
mediaType [Required] Media type of the job. 'Text' (required)

LiteralJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'literal' (required)
value [Required] Literal value for the input. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

ManagedComputeIdentity

Name Description Value
computeIdentityType [Required] Monitor compute identity type enum. 'ManagedIdentity' (required)
identity Managed service identity (system assigned and/or user assigned identities) ManagedServiceIdentity

ManagedIdentity

Name Description Value
clientId Specifies a user-assigned identity by client ID. For system-assigned, do not set this field. string

Constraints:
Min length = 36
Max length = 36
Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
identityType [Required] Specifies the type of identity framework. 'Managed' (required)
objectId Specifies a user-assigned identity by object ID. For system-assigned, do not set this field. string

Constraints:
Min length = 36
Max length = 36
Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
resourceId Specifies a user-assigned identity by ARM resource ID. For system-assigned, do not set this field. string

ManagedServiceIdentity

Name Description Value
type Type of managed service identity (where both SystemAssigned and UserAssigned types are allowed). 'None'
'SystemAssigned'
'SystemAssigned,UserAssigned'
'UserAssigned' (required)
userAssignedIdentities The set of user assigned identities associated with the resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}. The dictionary values can be empty objects ({}) in requests. UserAssignedIdentities

MedianStoppingPolicy

Name Description Value
policyType [Required] Name of policy configuration 'MedianStopping' (required)

Microsoft.MachineLearningServices/workspaces/schedules

Name Description Value
apiVersion The api version '2024-04-01-preview'
name The resource name string

Constraints:
Pattern = ^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$ (required)
properties [Required] Additional attributes of the entity. ScheduleProperties (required)
type The resource type 'Microsoft.MachineLearningServices/workspaces/schedules'

MLAssistConfiguration

Name Description Value
mlAssist Set to 'Disabled' for type MLAssistConfigurationDisabled. Set to 'Enabled' for type MLAssistConfigurationEnabled. 'Disabled'
'Enabled' (required)

MLAssistConfigurationDisabled

Name Description Value
mlAssist [Required] Indicates whether MLAssist feature is enabled. 'Disabled' (required)

MLAssistConfigurationEnabled

Name Description Value
inferencingComputeBinding [Required] AML compute binding used in inferencing. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
mlAssist [Required] Indicates whether MLAssist feature is enabled. 'Enabled' (required)
trainingComputeBinding [Required] AML compute binding used in training. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLFlowModelJobInput

Name Description Value
description Description for the input. string
jobInputType [Required] Specifies the type of job. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLFlowModelJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'mlflow_model' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLFlowModelJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'mlflow_model' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

MLTableJobInput

Name Description Value
description Description for the input. string
jobInputType [Required] Specifies the type of job. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLTableJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'mltable' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLTableJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'mltable' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

ModelPerformanceMetricThresholdBase

Name Description Value
modelType Set to 'Classification' for type ClassificationModelPerformanceMetricThreshold. Set to 'Regression' for type RegressionModelPerformanceMetricThreshold. 'Classification'
'Regression' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

ModelPerformanceSignal

Name Description Value
dataSegment The data segment. MonitoringDataSegment
metricThreshold [Required] A list of metrics to calculate and their associated thresholds. ModelPerformanceMetricThresholdBase (required)
productionData [Required] The data produced by the production service which performance will be calculated for. MonitoringInputDataBase[] (required)
referenceData [Required] The reference data used as the basis to calculate model performance. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'ModelPerformance' (required)

MonitorComputeConfigurationBase

Name Description Value
computeType Set to 'ServerlessSpark' for type MonitorServerlessSparkCompute. 'ServerlessSpark' (required)

MonitorComputeIdentityBase

Name Description Value
computeIdentityType Set to 'AmlToken' for type AmlTokenComputeIdentity. Set to 'ManagedIdentity' for type ManagedComputeIdentity. 'AmlToken'
'ManagedIdentity' (required)

MonitorDefinition

Name Description Value
alertNotificationSettings The monitor's notification settings. MonitorNotificationSettings
computeConfiguration [Required] The ARM resource ID of the compute resource to run the monitoring job on. MonitorComputeConfigurationBase (required)
monitoringTarget The ARM resource ID of either the model or deployment targeted by this monitor. MonitoringTarget
signals [Required] The signals to monitor. MonitorDefinitionSignals (required)

MonitorDefinitionSignals

Name Description Value

MonitorEmailNotificationSettings

Name Description Value
emails This is the email recipient list which has a limitation of 499 characters in total. string[]

MonitoringDataSegment

Name Description Value
feature The feature to segment the data on. string
values Filters for only the specified values of the given segmented feature. string[]

MonitoringFeatureFilterBase

Name Description Value
filterType Set to 'AllFeatures' for type AllFeatures. Set to 'FeatureSubset' for type FeatureSubset. Set to 'TopNByAttribution' for type TopNFeaturesByAttribution. 'AllFeatures'
'FeatureSubset'
'TopNByAttribution' (required)

MonitoringInputDataBase

Name Description Value
columns Mapping of column names to special uses. MonitoringInputDataBaseColumns
dataContext The context metadata of the data source. string
inputDataType Set to 'Fixed' for type FixedInputData. Set to 'Rolling' for type RollingInputData. Set to 'Static' for type StaticInputData. 'Fixed'
'Rolling'
'Static' (required)
jobInputType [Required] Specifies the type of job. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MonitoringInputDataBaseColumns

Name Description Value

MonitoringSignalBase

Name Description Value
notificationTypes The current notification mode for this signal. String array containing any of:
'AmlNotification'
'AzureMonitor'
properties Property dictionary. Properties can be added, but not removed or altered. MonitoringSignalBaseProperties
signalType Set to 'Custom' for type CustomMonitoringSignal. Set to 'DataDrift' for type DataDriftMonitoringSignal. Set to 'DataQuality' for type DataQualityMonitoringSignal. Set to 'FeatureAttributionDrift' for type FeatureAttributionDriftMonitoringSignal. Set to 'GenerationSafetyQuality' for type GenerationSafetyQualityMonitoringSignal. Set to 'GenerationTokenStatistics' for type GenerationTokenUsageSignal. Set to 'ModelPerformance' for type ModelPerformanceSignal. Set to 'PredictionDrift' for type PredictionDriftMonitoringSignal. 'Custom'
'DataDrift'
'DataQuality'
'FeatureAttributionDrift'
'GenerationSafetyQuality'
'GenerationTokenStatistics'
'ModelPerformance'
'PredictionDrift' (required)

MonitoringSignalBaseProperties

Name Description Value

MonitoringTarget

Name Description Value
deploymentId The ARM resource ID of either the deployment targeted by this monitor. string
modelId The ARM resource ID of either the model targeted by this monitor. string
taskType [Required] The machine learning task type of the model. 'Classification'
'QuestionAnswering'
'Regression' (required)

MonitoringThreshold

Name Description Value
value The threshold value. If null, the set default is dependent on the metric type. int

MonitoringWorkspaceConnection

Name Description Value
environmentVariables The properties of a workspace service connection to store as environment variables in the submitted jobs.
Key is workspace connection property path, name is environment variable key.
MonitoringWorkspaceConnectionEnvironmentVariables
secrets The properties of a workspace service connection to store as secrets in the submitted jobs.
Key is workspace connection property path, name is secret key.
MonitoringWorkspaceConnectionSecrets

MonitoringWorkspaceConnectionEnvironmentVariables

Name Description Value

MonitoringWorkspaceConnectionSecrets

Name Description Value

MonitorNotificationSettings

Name Description Value
emailNotificationSettings The AML notification email settings. MonitorEmailNotificationSettings

MonitorServerlessSparkCompute

Name Description Value
computeIdentity [Required] The identity scheme leveraged to by the spark jobs running on serverless Spark. MonitorComputeIdentityBase (required)
computeType [Required] Specifies the type of signal to monitor. 'ServerlessSpark' (required)
instanceType [Required] The instance type running the Spark job. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
runtimeVersion [Required] The Spark runtime version. string

Constraints:
Min length = 1
Pattern = ^[0-9]+\.[0-9]+$ (required)

Mpi

Name Description Value
distributionType [Required] Specifies the type of distribution framework. 'Mpi' (required)
processCountPerInstance Number of processes per MPI node. int

NCrossValidations

Name Description Value
mode Set to 'Auto' for type AutoNCrossValidations. Set to 'Custom' for type CustomNCrossValidations. 'Auto'
'Custom' (required)

NlpFixedParameters

Name Description Value
gradientAccumulationSteps Number of steps to accumulate gradients over before running a backward pass. int
learningRate The learning rate for the training procedure. int
learningRateScheduler The type of learning rate schedule to use during the training procedure. 'Constant'
'ConstantWithWarmup'
'Cosine'
'CosineWithRestarts'
'Linear'
'None'
'Polynomial'
modelName The name of the model to train. string
numberOfEpochs Number of training epochs. int
trainingBatchSize The batch size for the training procedure. int
validationBatchSize The batch size to be used during evaluation. int
warmupRatio The warmup ratio, used alongside LrSchedulerType. int
weightDecay The weight decay for the training procedure. int

NlpParameterSubspace

Name Description Value
gradientAccumulationSteps Number of steps to accumulate gradients over before running a backward pass. string
learningRate The learning rate for the training procedure. string
learningRateScheduler The type of learning rate schedule to use during the training procedure. string
modelName The name of the model to train. string
numberOfEpochs Number of training epochs. string
trainingBatchSize The batch size for the training procedure. string
validationBatchSize The batch size to be used during evaluation. string
warmupRatio The warmup ratio, used alongside LrSchedulerType. string
weightDecay The weight decay for the training procedure. string

NlpSweepSettings

Name Description Value
earlyTermination Type of early termination policy for the sweeping job. EarlyTerminationPolicy
samplingAlgorithm [Required] Type of sampling algorithm. 'Bayesian'
'Grid'
'Random' (required)

NlpVerticalFeaturizationSettings

Name Description Value
datasetLanguage Dataset language, useful for the text data. string

NlpVerticalLimitSettings

Name Description Value
maxConcurrentTrials Maximum Concurrent AutoML iterations. int
maxNodes Maximum nodes to use for the experiment. int
maxTrials Number of AutoML iterations. int
timeout AutoML job timeout. string
trialTimeout Timeout for individual HD trials. string

Nodes

Name Description Value
nodesValueType Set to 'All' for type AllNodes. 'All' (required)

NotificationSetting

Name Description Value
emailOn Send email notification to user on specified notification type String array containing any of:
'JobCancelled'
'JobCompleted'
'JobFailed'
emails This is the email recipient list which has a limitation of 499 characters in total concat with comma separator string[]
webhooks Send webhook callback to a service. Key is a user-provided name for the webhook. NotificationSettingWebhooks

NotificationSettingWebhooks

Name Description Value

NumericalDataDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Numerical' (required)
metric [Required] The numerical data drift metric to calculate. 'JensenShannonDistance'
'NormalizedWassersteinDistance'
'PopulationStabilityIndex'
'TwoSampleKolmogorovSmirnovTest' (required)

NumericalDataQualityMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Numerical' (required)
metric [Required] The numerical data quality metric to calculate. 'DataTypeErrorRate'
'NullValueRate'
'OutOfBoundsRate' (required)

NumericalPredictionDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Numerical' (required)
metric [Required] The numerical prediction drift metric to calculate. 'JensenShannonDistance'
'NormalizedWassersteinDistance'
'PopulationStabilityIndex'
'TwoSampleKolmogorovSmirnovTest' (required)

Objective

Name Description Value
goal [Required] Defines supported metric goals for hyperparameter tuning 'Maximize'
'Minimize' (required)
primaryMetric [Required] Name of the metric to optimize. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

PipelineJob

Name Description Value
inputs Inputs for the pipeline job. PipelineJobInputs
jobs Jobs construct the Pipeline Job. PipelineJobJobs
jobType [Required] Specifies the type of job. 'Pipeline' (required)
outputs Outputs for the pipeline job PipelineJobOutputs
settings Pipeline settings, for things like ContinueRunOnStepFailure etc. any
sourceJobId ARM resource ID of source job. string

PipelineJobInputs

Name Description Value

PipelineJobJobs

Name Description Value

PipelineJobOutputs

Name Description Value

PredictionDriftMetricThresholdBase

Name Description Value
dataType Set to 'Categorical' for type CategoricalPredictionDriftMetricThreshold. Set to 'Numerical' for type NumericalPredictionDriftMetricThreshold. 'Categorical'
'Numerical' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

PredictionDriftMonitoringSignal

Name Description Value
featureDataTypeOverride A dictionary that maps feature names to their respective data types. PredictionDriftMonitoringSignalFeatureDataTypeOverride
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. PredictionDriftMetricThresholdBase[] (required)
productionData [Required] The data which drift will be calculated for. MonitoringInputDataBase (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'PredictionDrift' (required)

PredictionDriftMonitoringSignalFeatureDataTypeOverride

Name Description Value

PyTorch

Name Description Value
distributionType [Required] Specifies the type of distribution framework. 'PyTorch' (required)
processCountPerInstance Number of processes per node. int

QueueSettings

Name Description Value
jobTier Controls the compute job tier 'Basic'
'Null'
'Premium'
'Spot'
'Standard'
priority Controls the priority of the job on a compute. int

RandomSamplingAlgorithm

Name Description Value
logbase An optional positive number or e in string format to be used as base for log based random sampling string
rule The specific type of random algorithm 'Random'
'Sobol'
samplingAlgorithmType [Required] The algorithm used for generating hyperparameter values, along with configuration properties 'Random' (required)
seed An optional integer to use as the seed for random number generation int

Ray

Name Description Value
address The address of Ray head node. string
dashboardPort The port to bind the dashboard server to. int
distributionType [Required] Specifies the type of distribution framework. 'Ray' (required)
headNodeAdditionalArgs Additional arguments passed to ray start in head node. string
includeDashboard Provide this argument to start the Ray dashboard GUI. bool
port The port of the head ray process. int
workerNodeAdditionalArgs Additional arguments passed to ray start in worker node. string

RecurrenceSchedule

Name Description Value
hours [Required] List of hours for the schedule. int[] (required)
minutes [Required] List of minutes for the schedule. int[] (required)
monthDays List of month days for the schedule int[]
weekDays List of days for the schedule. String array containing any of:
'Friday'
'Monday'
'Saturday'
'Sunday'
'Thursday'
'Tuesday'
'Wednesday'

RecurrenceTrigger

Name Description Value
frequency [Required] The frequency to trigger schedule. 'Day'
'Hour'
'Minute'
'Month'
'Week' (required)
interval [Required] Specifies schedule interval in conjunction with frequency int (required)
schedule The recurrence schedule. RecurrenceSchedule
triggerType [Required] 'Recurrence' (required)

Regression

Name Description Value
cvSplitColumnNames Columns to use for CVSplit data. string[]
featurizationSettings Featurization inputs needed for AutoML job. TableVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. TableFixedParameters
limitSettings Execution constraints for AutoMLJob. TableVerticalLimitSettings
nCrossValidations Number of cross validation folds to be applied on training dataset
when validation dataset is not provided.
NCrossValidations
primaryMetric Primary metric for regression task. 'NormalizedMeanAbsoluteError'
'NormalizedRootMeanSquaredError'
'R2Score'
'SpearmanCorrelation'
searchSpace Search space for sampling different combinations of models and their hyperparameters. TableParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. TableSweepSettings
taskType [Required] Task type for AutoMLJob. 'Regression' (required)
testData Test data input. MLTableJobInput
testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
trainingSettings Inputs for training phase for an AutoML Job. RegressionTrainingSettings
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. string

RegressionModelPerformanceMetricThreshold

Name Description Value
metric [Required] The regression model performance metric to calculate. 'MeanAbsoluteError'
'MeanSquaredError'
'RootMeanSquaredError' (required)
modelType [Required] Specifies the data type of the metric threshold. 'Regression' (required)

RegressionTrainingSettings

Name Description Value
allowedTrainingAlgorithms Allowed models for regression task. String array containing any of:
'DecisionTree'
'ElasticNet'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'RandomForest'
'SGD'
'XGBoostRegressor'
blockedTrainingAlgorithms Blocked models for regression task. String array containing any of:
'DecisionTree'
'ElasticNet'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'RandomForest'
'SGD'
'XGBoostRegressor'
enableDnnTraining Enable recommendation of DNN models. bool
enableModelExplainability Flag to turn on explainability on best model. bool
enableOnnxCompatibleModels Flag for enabling onnx compatible models. bool
enableStackEnsemble Enable stack ensemble run. bool
enableVoteEnsemble Enable voting ensemble run. bool
ensembleModelDownloadTimeout During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
Configure this parameter with a higher value than 300 secs, if more time is needed.
string
stackEnsembleSettings Stack ensemble settings for stack ensemble run. StackEnsembleSettings
trainingMode TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'.
If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen.
If 'NonDistributed' then only non distributed algorithms are chosen.
'Auto'
'Distributed'
'NonDistributed'

ResourceBaseProperties

Name Description Value

ResourceBaseProperties

Name Description Value

ResourceBaseProperties

Name Description Value

ResourceBaseTags

Name Description Value

ResourceBaseTags

Name Description Value

ResourceBaseTags

Name Description Value

ResourceConfigurationProperties

Name Description Value

RollingInputData

Name Description Value
inputDataType [Required] Specifies the type of signal to monitor. 'Rolling' (required)
preprocessingComponentId The ARM resource ID of the component resource used to preprocess the data. string
windowOffset [Required] The time offset between the end of the data window and the monitor's current run time. string (required)
windowSize [Required] The size of the trailing data window. string (required)

SamplingAlgorithm

Name Description Value
samplingAlgorithmType Set to 'Bayesian' for type BayesianSamplingAlgorithm. Set to 'Grid' for type GridSamplingAlgorithm. Set to 'Random' for type RandomSamplingAlgorithm. 'Bayesian'
'Grid'
'Random' (required)

ScheduleActionBase

Name Description Value
actionType Set to 'CreateJob' for type JobScheduleAction. Set to 'CreateMonitor' for type CreateMonitorAction. Set to 'ImportData' for type ImportDataAction. Set to 'InvokeBatchEndpoint' for type EndpointScheduleAction. 'CreateJob'
'CreateMonitor'
'ImportData'
'InvokeBatchEndpoint' (required)

ScheduleProperties

Name Description Value
action [Required] Specifies the action of the schedule ScheduleActionBase (required)
description The asset description text. string
displayName Display name of schedule. string
isEnabled Is the schedule enabled? bool
properties The asset property dictionary. ResourceBaseProperties
tags Tag dictionary. Tags can be added, removed, and updated. ResourceBaseTags
trigger [Required] Specifies the trigger details TriggerBase (required)

Seasonality

Name Description Value
mode Set to 'Auto' for type AutoSeasonality. Set to 'Custom' for type CustomSeasonality. 'Auto'
'Custom' (required)

SecretConfiguration

Name Description Value
uri Secret Uri.
Sample Uri : https://myvault.vault.azure.net/secrets/mysecretname/secretversion
string
workspaceSecretName Name of secret in workspace key vault. string

SparkJob

Name Description Value
archives Archive files used in the job. string[]
args Arguments for the job. string
codeId [Required] ARM resource ID of the code asset. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
conf Spark configured properties. SparkJobConf
entry [Required] The entry to execute on startup of the job. SparkJobEntry (required)
environmentId The ARM resource ID of the Environment specification for the job. string
environmentVariables Environment variables included in the job. SparkJobEnvironmentVariables
files Files used in the job. string[]
inputs Mapping of input data bindings used in the job. SparkJobInputs
jars Jar files used in the job. string[]
jobType [Required] Specifies the type of job. 'Spark' (required)
outputs Mapping of output data bindings used in the job. SparkJobOutputs
pyFiles Python files used in the job. string[]
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. SparkResourceConfiguration

SparkJobConf

Name Description Value

SparkJobEntry

Name Description Value
sparkJobEntryType Set to 'SparkJobPythonEntry' for type SparkJobPythonEntry. Set to 'SparkJobScalaEntry' for type SparkJobScalaEntry. 'SparkJobPythonEntry'
'SparkJobScalaEntry' (required)

SparkJobEnvironmentVariables

Name Description Value

SparkJobInputs

Name Description Value

SparkJobOutputs

Name Description Value

SparkJobPythonEntry

Name Description Value
file [Required] Relative python file path for job entry point. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
sparkJobEntryType [Required] Type of the job's entry point. 'SparkJobPythonEntry' (required)

SparkJobScalaEntry

Name Description Value
className [Required] Scala class name used as entry point. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
sparkJobEntryType [Required] Type of the job's entry point. 'SparkJobScalaEntry' (required)

SparkResourceConfiguration

Name Description Value
instanceType Optional type of VM used as supported by the compute target. string
runtimeVersion Version of spark runtime used for the job. string

StackEnsembleSettings

Name Description Value
stackMetaLearnerKWargs Optional parameters to pass to the initializer of the meta-learner. any
stackMetaLearnerTrainPercentage Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. int
stackMetaLearnerType The meta-learner is a model trained on the output of the individual heterogeneous models. 'ElasticNet'
'ElasticNetCV'
'LightGBMClassifier'
'LightGBMRegressor'
'LinearRegression'
'LogisticRegression'
'LogisticRegressionCV'
'None'

StaticInputData

Name Description Value
inputDataType [Required] Specifies the type of signal to monitor. 'Static' (required)
preprocessingComponentId The ARM resource ID of the component resource used to preprocess the data. string
windowEnd [Required] The end date of the data window. string (required)
windowStart [Required] The start date of the data window. string (required)

SweepJob

Name Description Value
componentConfiguration Component Configuration for sweep over component ComponentConfiguration
earlyTermination Early termination policies enable canceling poor-performing runs before they complete EarlyTerminationPolicy
inputs Mapping of input data bindings used in the job. SweepJobInputs
jobType [Required] Specifies the type of job. 'Sweep' (required)
limits Sweep Job limit. SweepJobLimits
objective [Required] Optimization objective. Objective (required)
outputs Mapping of output data bindings used in the job. SweepJobOutputs
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. JobResourceConfiguration
samplingAlgorithm [Required] The hyperparameter sampling algorithm SamplingAlgorithm (required)
searchSpace [Required] A dictionary containing each parameter and its distribution. The dictionary key is the name of the parameter any (required)
trial [Required] Trial component definition. TrialComponent (required)

SweepJobInputs

Name Description Value

SweepJobLimits

Name Description Value
jobLimitsType [Required] JobLimit type. 'Command'
'Sweep' (required)
maxConcurrentTrials Sweep Job max concurrent trials. int
maxTotalTrials Sweep Job max total trials. int
timeout The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. string
trialTimeout Sweep Job Trial timeout value. string

SweepJobOutputs

Name Description Value

TableFixedParameters

Name Description Value
booster Specify the boosting type, e.g gbdt for XGBoost. string
boostingType Specify the boosting type, e.g gbdt for LightGBM. string
growPolicy Specify the grow policy, which controls the way new nodes are added to the tree. string
learningRate The learning rate for the training procedure. int
maxBin Specify the Maximum number of discrete bins to bucket continuous features . int
maxDepth Specify the max depth to limit the tree depth explicitly. int
maxLeaves Specify the max leaves to limit the tree leaves explicitly. int
minDataInLeaf The minimum number of data per leaf. int
minSplitGain Minimum loss reduction required to make a further partition on a leaf node of the tree. int
modelName The name of the model to train. string
nEstimators Specify the number of trees (or rounds) in an model. int
numLeaves Specify the number of leaves. int
preprocessorName The name of the preprocessor to use. string
regAlpha L1 regularization term on weights. int
regLambda L2 regularization term on weights. int
subsample Subsample ratio of the training instance. int
subsampleFreq Frequency of subsample. int
treeMethod Specify the tree method. string
withMean If true, center before scaling the data with StandardScalar. bool
withStd If true, scaling the data with Unit Variance with StandardScalar. bool

TableParameterSubspace

Name Description Value
booster Specify the boosting type, e.g gbdt for XGBoost. string
boostingType Specify the boosting type, e.g gbdt for LightGBM. string
growPolicy Specify the grow policy, which controls the way new nodes are added to the tree. string
learningRate The learning rate for the training procedure. string
maxBin Specify the Maximum number of discrete bins to bucket continuous features . string
maxDepth Specify the max depth to limit the tree depth explicitly. string
maxLeaves Specify the max leaves to limit the tree leaves explicitly. string
minDataInLeaf The minimum number of data per leaf. string
minSplitGain Minimum loss reduction required to make a further partition on a leaf node of the tree. string
modelName The name of the model to train. string
nEstimators Specify the number of trees (or rounds) in an model. string
numLeaves Specify the number of leaves. string
preprocessorName The name of the preprocessor to use. string
regAlpha L1 regularization term on weights. string
regLambda L2 regularization term on weights. string
subsample Subsample ratio of the training instance. string
subsampleFreq Frequency of subsample string
treeMethod Specify the tree method. string
withMean If true, center before scaling the data with StandardScalar. string
withStd If true, scaling the data with Unit Variance with StandardScalar. string

TableSweepSettings

Name Description Value
earlyTermination Type of early termination policy for the sweeping job. EarlyTerminationPolicy
samplingAlgorithm [Required] Type of sampling algorithm. 'Bayesian'
'Grid'
'Random' (required)

TableVerticalFeaturizationSettings

Name Description Value
blockedTransformers These transformers shall not be used in featurization. String array containing any of:
'CatTargetEncoder'
'CountVectorizer'
'HashOneHotEncoder'
'LabelEncoder'
'NaiveBayes'
'OneHotEncoder'
'TextTargetEncoder'
'TfIdf'
'WoETargetEncoder'
'WordEmbedding'
columnNameAndTypes Dictionary of column name and its type (int, float, string, datetime etc). TableVerticalFeaturizationSettingsColumnNameAndTypes
datasetLanguage Dataset language, useful for the text data. string
enableDnnFeaturization Determines whether to use Dnn based featurizers for data featurization. bool
mode Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
If 'Off' is selected then no featurization is done.
If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
'Auto'
'Custom'
'Off'
transformerParams User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. TableVerticalFeaturizationSettingsTransformerParams

TableVerticalFeaturizationSettingsColumnNameAndTypes

Name Description Value

TableVerticalFeaturizationSettingsTransformerParams

Name Description Value

TableVerticalLimitSettings

Name Description Value
enableEarlyTermination Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. bool
exitScore Exit score for the AutoML job. int
maxConcurrentTrials Maximum Concurrent iterations. int
maxCoresPerTrial Max cores per iteration. int
maxNodes Maximum nodes to use for the experiment. int
maxTrials Number of iterations. int
sweepConcurrentTrials Number of concurrent sweeping runs that user wants to trigger. int
sweepTrials Number of sweeping runs that user wants to trigger. int
timeout AutoML job timeout. string
trialTimeout Iteration timeout. string

TargetLags

Name Description Value
mode Set to 'Auto' for type AutoTargetLags. Set to 'Custom' for type CustomTargetLags. 'Auto'
'Custom' (required)

TargetRollingWindowSize

Name Description Value
mode Set to 'Auto' for type AutoTargetRollingWindowSize. Set to 'Custom' for type CustomTargetRollingWindowSize. 'Auto'
'Custom' (required)

TensorFlow

Name Description Value
distributionType [Required] Specifies the type of distribution framework. 'TensorFlow' (required)
parameterServerCount Number of parameter server tasks. int
workerCount Number of workers. If not specified, will default to the instance count. int

TextClassification

Name Description Value
featurizationSettings Featurization inputs needed for AutoML job. NlpVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. NlpFixedParameters
limitSettings Execution constraints for AutoMLJob. NlpVerticalLimitSettings
primaryMetric Primary metric for Text-Classification task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. NlpParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. NlpSweepSettings
taskType [Required] Task type for AutoMLJob. 'TextClassification' (required)
validationData Validation data inputs. MLTableJobInput

TextClassificationMultilabel

Name Description Value
featurizationSettings Featurization inputs needed for AutoML job. NlpVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. NlpFixedParameters
limitSettings Execution constraints for AutoMLJob. NlpVerticalLimitSettings
searchSpace Search space for sampling different combinations of models and their hyperparameters. NlpParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. NlpSweepSettings
taskType [Required] Task type for AutoMLJob. 'TextClassificationMultilabel' (required)
validationData Validation data inputs. MLTableJobInput

TextNer

Name Description Value
featurizationSettings Featurization inputs needed for AutoML job. NlpVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. NlpFixedParameters
limitSettings Execution constraints for AutoMLJob. NlpVerticalLimitSettings
searchSpace Search space for sampling different combinations of models and their hyperparameters. NlpParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. NlpSweepSettings
taskType [Required] Task type for AutoMLJob. 'TextNER' (required)
validationData Validation data inputs. MLTableJobInput

TopNFeaturesByAttribution

Name Description Value
filterType [Required] Specifies the feature filter to leverage when selecting features to calculate metrics over. 'TopNByAttribution' (required)
top The number of top features to include. int

TrialComponent

Name Description Value
codeId ARM resource ID of the code asset. string
command [Required] The command to execute on startup of the job. eg. "python train.py" string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
distribution Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. DistributionConfiguration
environmentId [Required] The ARM resource ID of the Environment specification for the job. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
environmentVariables Environment variables included in the job. TrialComponentEnvironmentVariables
resources Compute Resource configuration for the job. JobResourceConfiguration

TrialComponentEnvironmentVariables

Name Description Value

TriggerBase

Name Description Value
endTime Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601.
Recommented format would be "2022-06-01T00:00:01"
If not present, the schedule will run indefinitely
string
startTime Specifies start time of schedule in ISO 8601 format, but without a UTC offset. string
timeZone Specifies time zone in which the schedule runs.
TimeZone should follow Windows time zone format. Refer: /windows-hardware/manufacture/desktop/default-time-zones?view=windows-11
string
triggerType Set to 'Cron' for type CronTrigger. Set to 'Recurrence' for type RecurrenceTrigger. 'Cron'
'Recurrence' (required)

TritonModelJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'triton_model' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

TritonModelJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'triton_model' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

TruncationSelectionPolicy

Name Description Value
policyType [Required] Name of policy configuration 'TruncationSelection' (required)
truncationPercentage The percentage of runs to cancel at each evaluation interval. int

UriFileJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'uri_file' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

UriFileJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'uri_file' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

UriFolderJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'uri_folder' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

UriFolderJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'uri_folder' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

UserAssignedIdentities

Name Description Value

UserAssignedIdentity

Name Description Value

UserIdentity

Name Description Value
identityType [Required] Specifies the type of identity framework. 'UserIdentity' (required)

Webhook

Name Description Value
eventType Send callback on a specified notification event string
webhookType Set to 'AzureDevOps' for type AzureDevOpsWebhook. 'AzureDevOps' (required)

Terraform (AzAPI provider) resource definition

The workspaces/schedules resource type can be deployed with operations that target:

  • Resource groups

For a list of changed properties in each API version, see change log.

Resource format

To create a Microsoft.MachineLearningServices/workspaces/schedules resource, add the following Terraform to your template.

resource "azapi_resource" "symbolicname" {
  type = "Microsoft.MachineLearningServices/workspaces/schedules@2024-04-01-preview"
  name = "string"
  body = jsonencode({
    properties = {
      action = {
        actionType = "string"
        // For remaining properties, see ScheduleActionBase objects
      }
      description = "string"
      displayName = "string"
      isEnabled = bool
      properties = {
        {customized property} = "string"
      }
      tags = {
        {customized property} = "string"
      }
      trigger = {
        endTime = "string"
        startTime = "string"
        timeZone = "string"
        triggerType = "string"
        // For remaining properties, see TriggerBase objects
      }
    }
  })
}

JobBaseProperties objects

Set the jobType property to specify the type of object.

For AutoML, use:

{
  environmentId = "string"
  environmentVariables = {
    {customized property} = "string"
  }
  jobType = "AutoML"
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings = {
    jobTier = "string"
    priority = int
  }
  resources = {
    dockerArgs = "string"
    instanceCount = int
    instanceType = "string"
    locations = [
      "string"
    ]
    maxInstanceCount = int
    properties = {
      {customized property} = ?
    }
    shmSize = "string"
  }
  taskDetails = {
    logVerbosity = "string"
    targetColumnName = "string"
    trainingData = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      pathOnCompute = "string"
      uri = "string"
    }
    taskType = "string"
    // For remaining properties, see AutoMLVertical objects
  }
}

For Command, use:

{
  autologgerSettings = {
    mlflowAutologger = "string"
  }
  codeId = "string"
  command = "string"
  distribution = {
    distributionType = "string"
    // For remaining properties, see DistributionConfiguration objects
  }
  environmentId = "string"
  environmentVariables = {
    {customized property} = "string"
  }
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  jobType = "Command"
  limits = {
    jobLimitsType = "string"
    timeout = "string"
  }
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings = {
    jobTier = "string"
    priority = int
  }
  resources = {
    dockerArgs = "string"
    instanceCount = int
    instanceType = "string"
    locations = [
      "string"
    ]
    maxInstanceCount = int
    properties = {
      {customized property} = ?
    }
    shmSize = "string"
  }
}

For FineTuning, use:

{
  fineTuningDetails = {
    model = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      pathOnCompute = "string"
      uri = "string"
    }
    taskType = "string"
    trainingData = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
    validationData = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
    modelProvider = "string"
    // For remaining properties, see FineTuningVertical objects
  }
  jobType = "FineTuning"
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
}

For Labeling, use:

{
  dataConfiguration = {
    dataId = "string"
    incrementalDataRefresh = "string"
  }
  jobInstructions = {
    uri = "string"
  }
  jobType = "Labeling"
  labelCategories = {
    {customized property} = {
      classes = {
        {customized property} = {
          displayName = "string"
          subclasses = {
            {customized property} = ...
          }
        }
      }
      displayName = "string"
      multiSelect = "string"
    }
  }
  labelingJobMediaProperties = {
    mediaType = "string"
    // For remaining properties, see LabelingJobMediaProperties objects
  }
  mlAssistConfiguration = {
    mlAssist = "string"
    // For remaining properties, see MLAssistConfiguration objects
  }
}

For Pipeline, use:

{
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  jobs = {
    {customized property} = ?
  }
  jobType = "Pipeline"
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  settings = ?
  sourceJobId = "string"
}

For Spark, use:

{
  archives = [
    "string"
  ]
  args = "string"
  codeId = "string"
  conf = {
    {customized property} = "string"
  }
  entry = {
    sparkJobEntryType = "string"
    // For remaining properties, see SparkJobEntry objects
  }
  environmentId = "string"
  environmentVariables = {
    {customized property} = "string"
  }
  files = [
    "string"
  ]
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  jars = [
    "string"
  ]
  jobType = "Spark"
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  pyFiles = [
    "string"
  ]
  queueSettings = {
    jobTier = "string"
    priority = int
  }
  resources = {
    instanceType = "string"
    runtimeVersion = "string"
  }
}

For Sweep, use:

{
  componentConfiguration = {
    pipelineSettings = ?
  }
  earlyTermination = {
    delayEvaluation = int
    evaluationInterval = int
    policyType = "string"
    // For remaining properties, see EarlyTerminationPolicy objects
  }
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  jobType = "Sweep"
  limits = {
    jobLimitsType = "string"
    maxConcurrentTrials = int
    maxTotalTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  objective = {
    goal = "string"
    primaryMetric = "string"
  }
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings = {
    jobTier = "string"
    priority = int
  }
  resources = {
    dockerArgs = "string"
    instanceCount = int
    instanceType = "string"
    locations = [
      "string"
    ]
    maxInstanceCount = int
    properties = {
      {customized property} = ?
    }
    shmSize = "string"
  }
  samplingAlgorithm = {
    samplingAlgorithmType = "string"
    // For remaining properties, see SamplingAlgorithm objects
  }
  searchSpace = ?
  trial = {
    codeId = "string"
    command = "string"
    distribution = {
      distributionType = "string"
      // For remaining properties, see DistributionConfiguration objects
    }
    environmentId = "string"
    environmentVariables = {
      {customized property} = "string"
    }
    resources = {
      dockerArgs = "string"
      instanceCount = int
      instanceType = "string"
      locations = [
        "string"
      ]
      maxInstanceCount = int
      properties = {
        {customized property} = ?
      }
      shmSize = "string"
    }
  }
}

MLAssistConfiguration objects

Set the mlAssist property to specify the type of object.

For Disabled, use:

{
  mlAssist = "Disabled"
}

For Enabled, use:

{
  inferencingComputeBinding = "string"
  mlAssist = "Enabled"
  trainingComputeBinding = "string"
}

AutoMLVertical objects

Set the taskType property to specify the type of object.

For Classification, use:

{
  cvSplitColumnNames = [
    "string"
  ]
  featurizationSettings = {
    blockedTransformers = [
      "string"
    ]
    columnNameAndTypes = {
      {customized property} = "string"
    }
    datasetLanguage = "string"
    enableDnnFeaturization = bool
    mode = "string"
    transformerParams = {
      {customized property} = [
        {
          fields = [
            "string"
          ]
          parameters = ?
        }
      ]
    }
  }
  fixedParameters = {
    booster = "string"
    boostingType = "string"
    growPolicy = "string"
    learningRate = int
    maxBin = int
    maxDepth = int
    maxLeaves = int
    minDataInLeaf = int
    minSplitGain = int
    modelName = "string"
    nEstimators = int
    numLeaves = int
    preprocessorName = "string"
    regAlpha = int
    regLambda = int
    subsample = int
    subsampleFreq = int
    treeMethod = "string"
    withMean = bool
    withStd = bool
  }
  limitSettings = {
    enableEarlyTermination = bool
    exitScore = int
    maxConcurrentTrials = int
    maxCoresPerTrial = int
    maxNodes = int
    maxTrials = int
    sweepConcurrentTrials = int
    sweepTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  nCrossValidations = {
    mode = "string"
    // For remaining properties, see NCrossValidations objects
  }
  positiveLabel = "string"
  primaryMetric = "string"
  searchSpace = [
    {
      booster = "string"
      boostingType = "string"
      growPolicy = "string"
      learningRate = "string"
      maxBin = "string"
      maxDepth = "string"
      maxLeaves = "string"
      minDataInLeaf = "string"
      minSplitGain = "string"
      modelName = "string"
      nEstimators = "string"
      numLeaves = "string"
      preprocessorName = "string"
      regAlpha = "string"
      regLambda = "string"
      subsample = "string"
      subsampleFreq = "string"
      treeMethod = "string"
      withMean = "string"
      withStd = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "Classification"
  testData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  testDataSize = int
  trainingSettings = {
    allowedTrainingAlgorithms = [
      "string"
    ]
    blockedTrainingAlgorithms = [
      "string"
    ]
    enableDnnTraining = bool
    enableModelExplainability = bool
    enableOnnxCompatibleModels = bool
    enableStackEnsemble = bool
    enableVoteEnsemble = bool
    ensembleModelDownloadTimeout = "string"
    stackEnsembleSettings = {
      stackMetaLearnerKWargs = ?
      stackMetaLearnerTrainPercentage = int
      stackMetaLearnerType = "string"
    }
    trainingMode = "string"
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  validationDataSize = int
  weightColumnName = "string"
}

For Forecasting, use:

{
  cvSplitColumnNames = [
    "string"
  ]
  featurizationSettings = {
    blockedTransformers = [
      "string"
    ]
    columnNameAndTypes = {
      {customized property} = "string"
    }
    datasetLanguage = "string"
    enableDnnFeaturization = bool
    mode = "string"
    transformerParams = {
      {customized property} = [
        {
          fields = [
            "string"
          ]
          parameters = ?
        }
      ]
    }
  }
  fixedParameters = {
    booster = "string"
    boostingType = "string"
    growPolicy = "string"
    learningRate = int
    maxBin = int
    maxDepth = int
    maxLeaves = int
    minDataInLeaf = int
    minSplitGain = int
    modelName = "string"
    nEstimators = int
    numLeaves = int
    preprocessorName = "string"
    regAlpha = int
    regLambda = int
    subsample = int
    subsampleFreq = int
    treeMethod = "string"
    withMean = bool
    withStd = bool
  }
  forecastingSettings = {
    countryOrRegionForHolidays = "string"
    cvStepSize = int
    featureLags = "string"
    featuresUnknownAtForecastTime = [
      "string"
    ]
    forecastHorizon = {
      mode = "string"
      // For remaining properties, see ForecastHorizon objects
    }
    frequency = "string"
    seasonality = {
      mode = "string"
      // For remaining properties, see Seasonality objects
    }
    shortSeriesHandlingConfig = "string"
    targetAggregateFunction = "string"
    targetLags = {
      mode = "string"
      // For remaining properties, see TargetLags objects
    }
    targetRollingWindowSize = {
      mode = "string"
      // For remaining properties, see TargetRollingWindowSize objects
    }
    timeColumnName = "string"
    timeSeriesIdColumnNames = [
      "string"
    ]
    useStl = "string"
  }
  limitSettings = {
    enableEarlyTermination = bool
    exitScore = int
    maxConcurrentTrials = int
    maxCoresPerTrial = int
    maxNodes = int
    maxTrials = int
    sweepConcurrentTrials = int
    sweepTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  nCrossValidations = {
    mode = "string"
    // For remaining properties, see NCrossValidations objects
  }
  primaryMetric = "string"
  searchSpace = [
    {
      booster = "string"
      boostingType = "string"
      growPolicy = "string"
      learningRate = "string"
      maxBin = "string"
      maxDepth = "string"
      maxLeaves = "string"
      minDataInLeaf = "string"
      minSplitGain = "string"
      modelName = "string"
      nEstimators = "string"
      numLeaves = "string"
      preprocessorName = "string"
      regAlpha = "string"
      regLambda = "string"
      subsample = "string"
      subsampleFreq = "string"
      treeMethod = "string"
      withMean = "string"
      withStd = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "Forecasting"
  testData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  testDataSize = int
  trainingSettings = {
    allowedTrainingAlgorithms = [
      "string"
    ]
    blockedTrainingAlgorithms = [
      "string"
    ]
    enableDnnTraining = bool
    enableModelExplainability = bool
    enableOnnxCompatibleModels = bool
    enableStackEnsemble = bool
    enableVoteEnsemble = bool
    ensembleModelDownloadTimeout = "string"
    stackEnsembleSettings = {
      stackMetaLearnerKWargs = ?
      stackMetaLearnerTrainPercentage = int
      stackMetaLearnerType = "string"
    }
    trainingMode = "string"
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  validationDataSize = int
  weightColumnName = "string"
}

For ImageClassification, use:

{
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  modelSettings = {
    advancedSettings = "string"
    amsGradient = bool
    augmentations = "string"
    beta1 = int
    beta2 = int
    checkpointFrequency = int
    checkpointModel = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      pathOnCompute = "string"
      uri = "string"
    }
    checkpointRunId = "string"
    distributed = bool
    earlyStopping = bool
    earlyStoppingDelay = int
    earlyStoppingPatience = int
    enableOnnxNormalization = bool
    evaluationFrequency = int
    gradientAccumulationStep = int
    layersToFreeze = int
    learningRate = int
    learningRateScheduler = "string"
    modelName = "string"
    momentum = int
    nesterov = bool
    numberOfEpochs = int
    numberOfWorkers = int
    optimizer = "string"
    randomSeed = int
    stepLRGamma = int
    stepLRStepSize = int
    trainingBatchSize = int
    trainingCropSize = int
    validationBatchSize = int
    validationCropSize = int
    validationResizeSize = int
    warmupCosineLRCycles = int
    warmupCosineLRWarmupEpochs = int
    weightDecay = int
    weightedLoss = int
  }
  primaryMetric = "string"
  searchSpace = [
    {
      amsGradient = "string"
      augmentations = "string"
      beta1 = "string"
      beta2 = "string"
      distributed = "string"
      earlyStopping = "string"
      earlyStoppingDelay = "string"
      earlyStoppingPatience = "string"
      enableOnnxNormalization = "string"
      evaluationFrequency = "string"
      gradientAccumulationStep = "string"
      layersToFreeze = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      modelName = "string"
      momentum = "string"
      nesterov = "string"
      numberOfEpochs = "string"
      numberOfWorkers = "string"
      optimizer = "string"
      randomSeed = "string"
      stepLRGamma = "string"
      stepLRStepSize = "string"
      trainingBatchSize = "string"
      trainingCropSize = "string"
      validationBatchSize = "string"
      validationCropSize = "string"
      validationResizeSize = "string"
      warmupCosineLRCycles = "string"
      warmupCosineLRWarmupEpochs = "string"
      weightDecay = "string"
      weightedLoss = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "ImageClassification"
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  validationDataSize = int
}

For ImageClassificationMultilabel, use:

{
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  modelSettings = {
    advancedSettings = "string"
    amsGradient = bool
    augmentations = "string"
    beta1 = int
    beta2 = int
    checkpointFrequency = int
    checkpointModel = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      pathOnCompute = "string"
      uri = "string"
    }
    checkpointRunId = "string"
    distributed = bool
    earlyStopping = bool
    earlyStoppingDelay = int
    earlyStoppingPatience = int
    enableOnnxNormalization = bool
    evaluationFrequency = int
    gradientAccumulationStep = int
    layersToFreeze = int
    learningRate = int
    learningRateScheduler = "string"
    modelName = "string"
    momentum = int
    nesterov = bool
    numberOfEpochs = int
    numberOfWorkers = int
    optimizer = "string"
    randomSeed = int
    stepLRGamma = int
    stepLRStepSize = int
    trainingBatchSize = int
    trainingCropSize = int
    validationBatchSize = int
    validationCropSize = int
    validationResizeSize = int
    warmupCosineLRCycles = int
    warmupCosineLRWarmupEpochs = int
    weightDecay = int
    weightedLoss = int
  }
  primaryMetric = "string"
  searchSpace = [
    {
      amsGradient = "string"
      augmentations = "string"
      beta1 = "string"
      beta2 = "string"
      distributed = "string"
      earlyStopping = "string"
      earlyStoppingDelay = "string"
      earlyStoppingPatience = "string"
      enableOnnxNormalization = "string"
      evaluationFrequency = "string"
      gradientAccumulationStep = "string"
      layersToFreeze = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      modelName = "string"
      momentum = "string"
      nesterov = "string"
      numberOfEpochs = "string"
      numberOfWorkers = "string"
      optimizer = "string"
      randomSeed = "string"
      stepLRGamma = "string"
      stepLRStepSize = "string"
      trainingBatchSize = "string"
      trainingCropSize = "string"
      validationBatchSize = "string"
      validationCropSize = "string"
      validationResizeSize = "string"
      warmupCosineLRCycles = "string"
      warmupCosineLRWarmupEpochs = "string"
      weightDecay = "string"
      weightedLoss = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "ImageClassificationMultilabel"
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  validationDataSize = int
}

For ImageInstanceSegmentation, use:

{
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  modelSettings = {
    advancedSettings = "string"
    amsGradient = bool
    augmentations = "string"
    beta1 = int
    beta2 = int
    boxDetectionsPerImage = int
    boxScoreThreshold = int
    checkpointFrequency = int
    checkpointModel = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      pathOnCompute = "string"
      uri = "string"
    }
    checkpointRunId = "string"
    distributed = bool
    earlyStopping = bool
    earlyStoppingDelay = int
    earlyStoppingPatience = int
    enableOnnxNormalization = bool
    evaluationFrequency = int
    gradientAccumulationStep = int
    imageSize = int
    layersToFreeze = int
    learningRate = int
    learningRateScheduler = "string"
    logTrainingMetrics = "string"
    logValidationLoss = "string"
    maxSize = int
    minSize = int
    modelName = "string"
    modelSize = "string"
    momentum = int
    multiScale = bool
    nesterov = bool
    nmsIouThreshold = int
    numberOfEpochs = int
    numberOfWorkers = int
    optimizer = "string"
    randomSeed = int
    stepLRGamma = int
    stepLRStepSize = int
    tileGridSize = "string"
    tileOverlapRatio = int
    tilePredictionsNmsThreshold = int
    trainingBatchSize = int
    validationBatchSize = int
    validationIouThreshold = int
    validationMetricType = "string"
    warmupCosineLRCycles = int
    warmupCosineLRWarmupEpochs = int
    weightDecay = int
  }
  primaryMetric = "string"
  searchSpace = [
    {
      amsGradient = "string"
      augmentations = "string"
      beta1 = "string"
      beta2 = "string"
      boxDetectionsPerImage = "string"
      boxScoreThreshold = "string"
      distributed = "string"
      earlyStopping = "string"
      earlyStoppingDelay = "string"
      earlyStoppingPatience = "string"
      enableOnnxNormalization = "string"
      evaluationFrequency = "string"
      gradientAccumulationStep = "string"
      imageSize = "string"
      layersToFreeze = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      maxSize = "string"
      minSize = "string"
      modelName = "string"
      modelSize = "string"
      momentum = "string"
      multiScale = "string"
      nesterov = "string"
      nmsIouThreshold = "string"
      numberOfEpochs = "string"
      numberOfWorkers = "string"
      optimizer = "string"
      randomSeed = "string"
      stepLRGamma = "string"
      stepLRStepSize = "string"
      tileGridSize = "string"
      tileOverlapRatio = "string"
      tilePredictionsNmsThreshold = "string"
      trainingBatchSize = "string"
      validationBatchSize = "string"
      validationIouThreshold = "string"
      validationMetricType = "string"
      warmupCosineLRCycles = "string"
      warmupCosineLRWarmupEpochs = "string"
      weightDecay = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "ImageInstanceSegmentation"
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  validationDataSize = int
}

For ImageObjectDetection, use:

{
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  modelSettings = {
    advancedSettings = "string"
    amsGradient = bool
    augmentations = "string"
    beta1 = int
    beta2 = int
    boxDetectionsPerImage = int
    boxScoreThreshold = int
    checkpointFrequency = int
    checkpointModel = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      pathOnCompute = "string"
      uri = "string"
    }
    checkpointRunId = "string"
    distributed = bool
    earlyStopping = bool
    earlyStoppingDelay = int
    earlyStoppingPatience = int
    enableOnnxNormalization = bool
    evaluationFrequency = int
    gradientAccumulationStep = int
    imageSize = int
    layersToFreeze = int
    learningRate = int
    learningRateScheduler = "string"
    logTrainingMetrics = "string"
    logValidationLoss = "string"
    maxSize = int
    minSize = int
    modelName = "string"
    modelSize = "string"
    momentum = int
    multiScale = bool
    nesterov = bool
    nmsIouThreshold = int
    numberOfEpochs = int
    numberOfWorkers = int
    optimizer = "string"
    randomSeed = int
    stepLRGamma = int
    stepLRStepSize = int
    tileGridSize = "string"
    tileOverlapRatio = int
    tilePredictionsNmsThreshold = int
    trainingBatchSize = int
    validationBatchSize = int
    validationIouThreshold = int
    validationMetricType = "string"
    warmupCosineLRCycles = int
    warmupCosineLRWarmupEpochs = int
    weightDecay = int
  }
  primaryMetric = "string"
  searchSpace = [
    {
      amsGradient = "string"
      augmentations = "string"
      beta1 = "string"
      beta2 = "string"
      boxDetectionsPerImage = "string"
      boxScoreThreshold = "string"
      distributed = "string"
      earlyStopping = "string"
      earlyStoppingDelay = "string"
      earlyStoppingPatience = "string"
      enableOnnxNormalization = "string"
      evaluationFrequency = "string"
      gradientAccumulationStep = "string"
      imageSize = "string"
      layersToFreeze = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      maxSize = "string"
      minSize = "string"
      modelName = "string"
      modelSize = "string"
      momentum = "string"
      multiScale = "string"
      nesterov = "string"
      nmsIouThreshold = "string"
      numberOfEpochs = "string"
      numberOfWorkers = "string"
      optimizer = "string"
      randomSeed = "string"
      stepLRGamma = "string"
      stepLRStepSize = "string"
      tileGridSize = "string"
      tileOverlapRatio = "string"
      tilePredictionsNmsThreshold = "string"
      trainingBatchSize = "string"
      validationBatchSize = "string"
      validationIouThreshold = "string"
      validationMetricType = "string"
      warmupCosineLRCycles = "string"
      warmupCosineLRWarmupEpochs = "string"
      weightDecay = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "ImageObjectDetection"
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  validationDataSize = int
}

For Regression, use:

{
  cvSplitColumnNames = [
    "string"
  ]
  featurizationSettings = {
    blockedTransformers = [
      "string"
    ]
    columnNameAndTypes = {
      {customized property} = "string"
    }
    datasetLanguage = "string"
    enableDnnFeaturization = bool
    mode = "string"
    transformerParams = {
      {customized property} = [
        {
          fields = [
            "string"
          ]
          parameters = ?
        }
      ]
    }
  }
  fixedParameters = {
    booster = "string"
    boostingType = "string"
    growPolicy = "string"
    learningRate = int
    maxBin = int
    maxDepth = int
    maxLeaves = int
    minDataInLeaf = int
    minSplitGain = int
    modelName = "string"
    nEstimators = int
    numLeaves = int
    preprocessorName = "string"
    regAlpha = int
    regLambda = int
    subsample = int
    subsampleFreq = int
    treeMethod = "string"
    withMean = bool
    withStd = bool
  }
  limitSettings = {
    enableEarlyTermination = bool
    exitScore = int
    maxConcurrentTrials = int
    maxCoresPerTrial = int
    maxNodes = int
    maxTrials = int
    sweepConcurrentTrials = int
    sweepTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  nCrossValidations = {
    mode = "string"
    // For remaining properties, see NCrossValidations objects
  }
  primaryMetric = "string"
  searchSpace = [
    {
      booster = "string"
      boostingType = "string"
      growPolicy = "string"
      learningRate = "string"
      maxBin = "string"
      maxDepth = "string"
      maxLeaves = "string"
      minDataInLeaf = "string"
      minSplitGain = "string"
      modelName = "string"
      nEstimators = "string"
      numLeaves = "string"
      preprocessorName = "string"
      regAlpha = "string"
      regLambda = "string"
      subsample = "string"
      subsampleFreq = "string"
      treeMethod = "string"
      withMean = "string"
      withStd = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "Regression"
  testData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  testDataSize = int
  trainingSettings = {
    allowedTrainingAlgorithms = [
      "string"
    ]
    blockedTrainingAlgorithms = [
      "string"
    ]
    enableDnnTraining = bool
    enableModelExplainability = bool
    enableOnnxCompatibleModels = bool
    enableStackEnsemble = bool
    enableVoteEnsemble = bool
    ensembleModelDownloadTimeout = "string"
    stackEnsembleSettings = {
      stackMetaLearnerKWargs = ?
      stackMetaLearnerTrainPercentage = int
      stackMetaLearnerType = "string"
    }
    trainingMode = "string"
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
  validationDataSize = int
  weightColumnName = "string"
}

For TextClassification, use:

{
  featurizationSettings = {
    datasetLanguage = "string"
  }
  fixedParameters = {
    gradientAccumulationSteps = int
    learningRate = int
    learningRateScheduler = "string"
    modelName = "string"
    numberOfEpochs = int
    trainingBatchSize = int
    validationBatchSize = int
    warmupRatio = int
    weightDecay = int
  }
  limitSettings = {
    maxConcurrentTrials = int
    maxNodes = int
    maxTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  primaryMetric = "string"
  searchSpace = [
    {
      gradientAccumulationSteps = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      modelName = "string"
      numberOfEpochs = "string"
      trainingBatchSize = "string"
      validationBatchSize = "string"
      warmupRatio = "string"
      weightDecay = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "TextClassification"
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
}

For TextClassificationMultilabel, use:

{
  featurizationSettings = {
    datasetLanguage = "string"
  }
  fixedParameters = {
    gradientAccumulationSteps = int
    learningRate = int
    learningRateScheduler = "string"
    modelName = "string"
    numberOfEpochs = int
    trainingBatchSize = int
    validationBatchSize = int
    warmupRatio = int
    weightDecay = int
  }
  limitSettings = {
    maxConcurrentTrials = int
    maxNodes = int
    maxTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  searchSpace = [
    {
      gradientAccumulationSteps = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      modelName = "string"
      numberOfEpochs = "string"
      trainingBatchSize = "string"
      validationBatchSize = "string"
      warmupRatio = "string"
      weightDecay = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "TextClassificationMultilabel"
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
}

For TextNER, use:

{
  featurizationSettings = {
    datasetLanguage = "string"
  }
  fixedParameters = {
    gradientAccumulationSteps = int
    learningRate = int
    learningRateScheduler = "string"
    modelName = "string"
    numberOfEpochs = int
    trainingBatchSize = int
    validationBatchSize = int
    warmupRatio = int
    weightDecay = int
  }
  limitSettings = {
    maxConcurrentTrials = int
    maxNodes = int
    maxTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  searchSpace = [
    {
      gradientAccumulationSteps = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      modelName = "string"
      numberOfEpochs = "string"
      trainingBatchSize = "string"
      validationBatchSize = "string"
      warmupRatio = "string"
      weightDecay = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  taskType = "TextNER"
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    pathOnCompute = "string"
    uri = "string"
  }
}

LabelingJobMediaProperties objects

Set the mediaType property to specify the type of object.

For Image, use:

{
  annotationType = "string"
  mediaType = "Image"
}

For Text, use:

{
  annotationType = "string"
  mediaType = "Text"
}

DistributionConfiguration objects

Set the distributionType property to specify the type of object.

For Mpi, use:

{
  distributionType = "Mpi"
  processCountPerInstance = int
}

For PyTorch, use:

{
  distributionType = "PyTorch"
  processCountPerInstance = int
}

For Ray, use:

{
  address = "string"
  dashboardPort = int
  distributionType = "Ray"
  headNodeAdditionalArgs = "string"
  includeDashboard = bool
  port = int
  workerNodeAdditionalArgs = "string"
}

For TensorFlow, use:

{
  distributionType = "TensorFlow"
  parameterServerCount = int
  workerCount = int
}

NCrossValidations objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode = "Auto"
}

For Custom, use:

{
  mode = "Custom"
  value = int
}

TargetLags objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode = "Auto"
}

For Custom, use:

{
  mode = "Custom"
  values = [
    int
  ]
}

MonitorComputeIdentityBase objects

Set the computeIdentityType property to specify the type of object.

For AmlToken, use:

{
  computeIdentityType = "AmlToken"
}

For ManagedIdentity, use:

{
  computeIdentityType = "ManagedIdentity"
  identity = {
    type = "string"
    userAssignedIdentities = {
      {customized property} = {
      }
    }
  }
}

EarlyTerminationPolicy objects

Set the policyType property to specify the type of object.

For Bandit, use:

{
  policyType = "Bandit"
  slackAmount = int
  slackFactor = int
}

For MedianStopping, use:

{
  policyType = "MedianStopping"
}

For TruncationSelection, use:

{
  policyType = "TruncationSelection"
  truncationPercentage = int
}

JobOutput objects

Set the jobOutputType property to specify the type of object.

For custom_model, use:

{
  assetName = "string"
  assetVersion = "string"
  autoDeleteSetting = {
    condition = "string"
    value = "string"
  }
  jobOutputType = "custom_model"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For mlflow_model, use:

{
  assetName = "string"
  assetVersion = "string"
  autoDeleteSetting = {
    condition = "string"
    value = "string"
  }
  jobOutputType = "mlflow_model"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For mltable, use:

{
  assetName = "string"
  assetVersion = "string"
  autoDeleteSetting = {
    condition = "string"
    value = "string"
  }
  jobOutputType = "mltable"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For triton_model, use:

{
  assetName = "string"
  assetVersion = "string"
  autoDeleteSetting = {
    condition = "string"
    value = "string"
  }
  jobOutputType = "triton_model"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For uri_file, use:

{
  assetName = "string"
  assetVersion = "string"
  autoDeleteSetting = {
    condition = "string"
    value = "string"
  }
  jobOutputType = "uri_file"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For uri_folder, use:

{
  assetName = "string"
  assetVersion = "string"
  autoDeleteSetting = {
    condition = "string"
    value = "string"
  }
  jobOutputType = "uri_folder"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

MonitoringInputDataBase objects

Set the inputDataType property to specify the type of object.

For Fixed, use:

{
  inputDataType = "Fixed"
}

For Rolling, use:

{
  inputDataType = "Rolling"
  preprocessingComponentId = "string"
  windowOffset = "string"
  windowSize = "string"
}

For Static, use:

{
  inputDataType = "Static"
  preprocessingComponentId = "string"
  windowEnd = "string"
  windowStart = "string"
}

SparkJobEntry objects

Set the sparkJobEntryType property to specify the type of object.

For SparkJobPythonEntry, use:

{
  file = "string"
  sparkJobEntryType = "SparkJobPythonEntry"
}

For SparkJobScalaEntry, use:

{
  className = "string"
  sparkJobEntryType = "SparkJobScalaEntry"
}

Webhook objects

Set the webhookType property to specify the type of object.

For AzureDevOps, use:

{
  webhookType = "AzureDevOps"
}

IdentityConfiguration objects

Set the identityType property to specify the type of object.

For AMLToken, use:

{
  identityType = "AMLToken"
}

For Managed, use:

{
  clientId = "string"
  identityType = "Managed"
  objectId = "string"
  resourceId = "string"
}

For UserIdentity, use:

{
  identityType = "UserIdentity"
}

ScheduleActionBase objects

Set the actionType property to specify the type of object.

For CreateJob, use:

{
  actionType = "CreateJob"
  jobDefinition = {
    componentId = "string"
    computeId = "string"
    description = "string"
    displayName = "string"
    experimentName = "string"
    identity = {
      identityType = "string"
      // For remaining properties, see IdentityConfiguration objects
    }
    isArchived = bool
    notificationSetting = {
      emailOn = [
        "string"
      ]
      emails = [
        "string"
      ]
      webhooks = {
        {customized property} = {
          eventType = "string"
          webhookType = "string"
          // For remaining properties, see Webhook objects
        }
      }
    }
    properties = {
      {customized property} = "string"
    }
    secretsConfiguration = {
      {customized property} = {
        uri = "string"
        workspaceSecretName = "string"
      }
    }
    services = {
      {customized property} = {
        endpoint = "string"
        jobServiceType = "string"
        nodes = {
          nodesValueType = "string"
          // For remaining properties, see Nodes objects
        }
        port = int
        properties = {
          {customized property} = "string"
        }
      }
    }
    tags = {
      {customized property} = "string"
    }
    jobType = "string"
    // For remaining properties, see JobBaseProperties objects
  }
}

For CreateMonitor, use:

{
  actionType = "CreateMonitor"
  monitorDefinition = {
    alertNotificationSettings = {
      emailNotificationSettings = {
        emails = [
          "string"
        ]
      }
    }
    computeConfiguration = {
      computeType = "string"
      // For remaining properties, see MonitorComputeConfigurationBase objects
    }
    monitoringTarget = {
      deploymentId = "string"
      modelId = "string"
      taskType = "string"
    }
    signals = {
      {customized property} = {
        notificationTypes = [
          "string"
        ]
        properties = {
          {customized property} = "string"
        }
        signalType = "string"
        // For remaining properties, see MonitoringSignalBase objects
      }
    }
  }
}

For ImportData, use:

{
  actionType = "ImportData"
  dataImportDefinition = {
    assetName = "string"
    autoDeleteSetting = {
      condition = "string"
      value = "string"
    }
    dataType = "string"
    dataUri = "string"
    description = "string"
    intellectualProperty = {
      protectionLevel = "string"
      publisher = "string"
    }
    isAnonymous = bool
    isArchived = bool
    properties = {
      {customized property} = "string"
    }
    source = {
      connection = "string"
      sourceType = "string"
      // For remaining properties, see DataImportSource objects
    }
    stage = "string"
    tags = {
      {customized property} = "string"
    }
  }
}

For InvokeBatchEndpoint, use:

{
  actionType = "InvokeBatchEndpoint"
  endpointInvocationDefinition = ?
}

ModelPerformanceMetricThresholdBase objects

Set the modelType property to specify the type of object.

For Classification, use:

{
  metric = "string"
  modelType = "Classification"
}

For Regression, use:

{
  metric = "string"
  modelType = "Regression"
}

DataQualityMetricThresholdBase objects

Set the dataType property to specify the type of object.

For Categorical, use:

{
  dataType = "Categorical"
  metric = "string"
}

For Numerical, use:

{
  dataType = "Numerical"
  metric = "string"
}

SamplingAlgorithm objects

Set the samplingAlgorithmType property to specify the type of object.

For Bayesian, use:

{
  samplingAlgorithmType = "Bayesian"
}

For Grid, use:

{
  samplingAlgorithmType = "Grid"
}

For Random, use:

{
  logbase = "string"
  rule = "string"
  samplingAlgorithmType = "Random"
  seed = int
}

FineTuningVertical objects

Set the modelProvider property to specify the type of object.

For AzureOpenAI, use:

{
  hyperParameters = {
    batchSize = int
    learningRateMultiplier = int
    nEpochs = int
  }
  modelProvider = "AzureOpenAI"
}

For Custom, use:

{
  hyperParameters = {
    {customized property} = "string"
  }
  modelProvider = "Custom"
}

MonitoringSignalBase objects

Set the signalType property to specify the type of object.

For Custom, use:

{
  componentId = "string"
  inputAssets = {
    {customized property} = {
      columns = {
        {customized property} = "string"
      }
      dataContext = "string"
      jobInputType = "string"
      uri = "string"
      inputDataType = "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  }
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  metricThresholds = [
    {
      metric = "string"
      threshold = {
        value = int
      }
    }
  ]
  signalType = "Custom"
  workspaceConnection = {
    environmentVariables = {
      {customized property} = "string"
    }
    secrets = {
      {customized property} = "string"
    }
  }
}

For DataDrift, use:

{
  dataSegment = {
    feature = "string"
    values = [
      "string"
    ]
  }
  featureDataTypeOverride = {
    {customized property} = "string"
  }
  featureImportanceSettings = {
    mode = "string"
    targetColumn = "string"
  }
  features = {
    filterType = "string"
    // For remaining properties, see MonitoringFeatureFilterBase objects
  }
  metricThresholds = [
    {
      threshold = {
        value = int
      }
      dataType = "string"
      // For remaining properties, see DataDriftMetricThresholdBase objects
    }
  ]
  productionData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType = "DataDrift"
}

For DataQuality, use:

{
  featureDataTypeOverride = {
    {customized property} = "string"
  }
  featureImportanceSettings = {
    mode = "string"
    targetColumn = "string"
  }
  features = {
    filterType = "string"
    // For remaining properties, see MonitoringFeatureFilterBase objects
  }
  metricThresholds = [
    {
      threshold = {
        value = int
      }
      dataType = "string"
      // For remaining properties, see DataQualityMetricThresholdBase objects
    }
  ]
  productionData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType = "DataQuality"
}

For FeatureAttributionDrift, use:

{
  featureDataTypeOverride = {
    {customized property} = "string"
  }
  featureImportanceSettings = {
    mode = "string"
    targetColumn = "string"
  }
  metricThreshold = {
    metric = "string"
    threshold = {
      value = int
    }
  }
  productionData = [
    {
      columns = {
        {customized property} = "string"
      }
      dataContext = "string"
      jobInputType = "string"
      uri = "string"
      inputDataType = "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  referenceData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType = "FeatureAttributionDrift"
}

For GenerationSafetyQuality, use:

{
  metricThresholds = [
    {
      metric = "string"
      threshold = {
        value = int
      }
    }
  ]
  productionData = [
    {
      columns = {
        {customized property} = "string"
      }
      dataContext = "string"
      jobInputType = "string"
      uri = "string"
      inputDataType = "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  samplingRate = int
  signalType = "GenerationSafetyQuality"
  workspaceConnectionId = "string"
}

For GenerationTokenStatistics, use:

{
  metricThresholds = [
    {
      metric = "string"
      threshold = {
        value = int
      }
    }
  ]
  productionData = [
    {
      columns = {
        {customized property} = "string"
      }
      dataContext = "string"
      jobInputType = "string"
      uri = "string"
      inputDataType = "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  samplingRate = int
  signalType = "GenerationTokenStatistics"
}

For ModelPerformance, use:

{
  dataSegment = {
    feature = "string"
    values = [
      "string"
    ]
  }
  metricThreshold = {
    threshold = {
      value = int
    }
    modelType = "string"
    // For remaining properties, see ModelPerformanceMetricThresholdBase objects
  }
  productionData = [
    {
      columns = {
        {customized property} = "string"
      }
      dataContext = "string"
      jobInputType = "string"
      uri = "string"
      inputDataType = "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  referenceData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType = "ModelPerformance"
}

For PredictionDrift, use:

{
  featureDataTypeOverride = {
    {customized property} = "string"
  }
  metricThresholds = [
    {
      threshold = {
        value = int
      }
      dataType = "string"
      // For remaining properties, see PredictionDriftMetricThresholdBase objects
    }
  ]
  productionData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  signalType = "PredictionDrift"
}

DataDriftMetricThresholdBase objects

Set the dataType property to specify the type of object.

For Categorical, use:

{
  dataType = "Categorical"
  metric = "string"
}

For Numerical, use:

{
  dataType = "Numerical"
  metric = "string"
}

JobInput objects

Set the jobInputType property to specify the type of object.

For custom_model, use:

{
  jobInputType = "custom_model"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For literal, use:

{
  jobInputType = "literal"
  value = "string"
}

For mlflow_model, use:

{
  jobInputType = "mlflow_model"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For mltable, use:

{
  jobInputType = "mltable"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For triton_model, use:

{
  jobInputType = "triton_model"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For uri_file, use:

{
  jobInputType = "uri_file"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

For uri_folder, use:

{
  jobInputType = "uri_folder"
  mode = "string"
  pathOnCompute = "string"
  uri = "string"
}

Seasonality objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode = "Auto"
}

For Custom, use:

{
  mode = "Custom"
  value = int
}

TargetRollingWindowSize objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode = "Auto"
}

For Custom, use:

{
  mode = "Custom"
  value = int
}

MonitorComputeConfigurationBase objects

Set the computeType property to specify the type of object.

For ServerlessSpark, use:

{
  computeIdentity = {
    computeIdentityType = "string"
    // For remaining properties, see MonitorComputeIdentityBase objects
  }
  computeType = "ServerlessSpark"
  instanceType = "string"
  runtimeVersion = "string"
}

DataImportSource objects

Set the sourceType property to specify the type of object.

For database, use:

{
  query = "string"
  sourceType = "database"
  storedProcedure = "string"
  storedProcedureParams = [
    {
      {customized property} = "string"
    }
  ]
  tableName = "string"
}

For file_system, use:

{
  path = "string"
  sourceType = "file_system"
}

MonitoringFeatureFilterBase objects

Set the filterType property to specify the type of object.

For AllFeatures, use:

{
  filterType = "AllFeatures"
}

For FeatureSubset, use:

{
  features = [
    "string"
  ]
  filterType = "FeatureSubset"
}

For TopNByAttribution, use:

{
  filterType = "TopNByAttribution"
  top = int
}

PredictionDriftMetricThresholdBase objects

Set the dataType property to specify the type of object.

For Categorical, use:

{
  dataType = "Categorical"
  metric = "string"
}

For Numerical, use:

{
  dataType = "Numerical"
  metric = "string"
}

TriggerBase objects

Set the triggerType property to specify the type of object.

For Cron, use:

{
  expression = "string"
  triggerType = "Cron"
}

For Recurrence, use:

{
  frequency = "string"
  interval = int
  schedule = {
    hours = [
      int
    ]
    minutes = [
      int
    ]
    monthDays = [
      int
    ]
    weekDays = [
      "string"
    ]
  }
  triggerType = "Recurrence"
}

ForecastHorizon objects

Set the mode property to specify the type of object.

For Auto, use:

{
  mode = "Auto"
}

For Custom, use:

{
  mode = "Custom"
  value = int
}

Nodes objects

Set the nodesValueType property to specify the type of object.

For All, use:

{
  nodesValueType = "All"
}

Property values

AllFeatures

Name Description Value
filterType [Required] Specifies the feature filter to leverage when selecting features to calculate metrics over. 'AllFeatures' (required)

AllNodes

Name Description Value
nodesValueType [Required] Type of the Nodes value 'All' (required)

AmlToken

Name Description Value
identityType [Required] Specifies the type of identity framework. 'AMLToken' (required)

AmlTokenComputeIdentity

Name Description Value
computeIdentityType [Required] Monitor compute identity type enum. 'AmlToken' (required)

AutoDeleteSetting

Name Description Value
condition When to check if an asset is expired 'CreatedGreaterThan'
'LastAccessedGreaterThan'
value Expiration condition value. string

AutoForecastHorizon

Name Description Value
mode [Required] Set forecast horizon value selection mode. 'Auto' (required)

AutologgerSettings

Name Description Value
mlflowAutologger [Required] Indicates whether mlflow autologger is enabled. 'Disabled'
'Enabled' (required)

AutoMLJob

Name Description Value
environmentId The ARM resource ID of the Environment specification for the job.
This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job.
string
environmentVariables Environment variables included in the job. AutoMLJobEnvironmentVariables
jobType [Required] Specifies the type of job. 'AutoML' (required)
outputs Mapping of output data bindings used in the job. AutoMLJobOutputs
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. JobResourceConfiguration
taskDetails [Required] This represents scenario which can be one of Tables/NLP/Image AutoMLVertical (required)

AutoMLJobEnvironmentVariables

Name Description Value

AutoMLJobOutputs

Name Description Value

AutoMLVertical

Name Description Value
logVerbosity Log verbosity for the job. 'Critical'
'Debug'
'Error'
'Info'
'NotSet'
'Warning'
targetColumnName Target column name: This is prediction values column.
Also known as label column name in context of classification tasks.
string
taskType Set to 'Classification' for type Classification. Set to 'Forecasting' for type Forecasting. Set to 'ImageClassification' for type ImageClassification. Set to 'ImageClassificationMultilabel' for type ImageClassificationMultilabel. Set to 'ImageInstanceSegmentation' for type ImageInstanceSegmentation. Set to 'ImageObjectDetection' for type ImageObjectDetection. Set to 'Regression' for type Regression. Set to 'TextClassification' for type TextClassification. Set to 'TextClassificationMultilabel' for type TextClassificationMultilabel. Set to 'TextNER' for type TextNer. 'Classification'
'Forecasting'
'ImageClassification'
'ImageClassificationMultilabel'
'ImageInstanceSegmentation'
'ImageObjectDetection'
'Regression'
'TextClassification'
'TextClassificationMultilabel'
'TextNER' (required)
trainingData [Required] Training data input. MLTableJobInput (required)

AutoNCrossValidations

Name Description Value
mode [Required] Mode for determining N-Cross validations. 'Auto' (required)

AutoSeasonality

Name Description Value
mode [Required] Seasonality mode. 'Auto' (required)

AutoTargetLags

Name Description Value
mode [Required] Set target lags mode - Auto/Custom 'Auto' (required)

AutoTargetRollingWindowSize

Name Description Value
mode [Required] TargetRollingWindowSiz detection mode. 'Auto' (required)

AzureDevOpsWebhook

Name Description Value
webhookType [Required] Specifies the type of service to send a callback 'AzureDevOps' (required)

AzureOpenAiFineTuning

Name Description Value
hyperParameters HyperParameters for fine tuning Azure Open AI model. AzureOpenAiHyperParameters
modelProvider [Required] Enum to determine the type of fine tuning. 'AzureOpenAI' (required)

AzureOpenAiHyperParameters

Name Description Value
batchSize Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance. int
learningRateMultiplier Scaling factor for the learning rate. A smaller learning rate may be useful to avoid over fitting. int
nEpochs The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset. int

BanditPolicy

Name Description Value
policyType [Required] Name of policy configuration 'Bandit' (required)
slackAmount Absolute distance allowed from the best performing run. int
slackFactor Ratio of the allowed distance from the best performing run. int

BayesianSamplingAlgorithm

Name Description Value
samplingAlgorithmType [Required] The algorithm used for generating hyperparameter values, along with configuration properties 'Bayesian' (required)

CategoricalDataDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Categorical' (required)
metric [Required] The categorical data drift metric to calculate. 'JensenShannonDistance'
'PearsonsChiSquaredTest'
'PopulationStabilityIndex' (required)

CategoricalDataQualityMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Categorical' (required)
metric [Required] The categorical data quality metric to calculate. 'DataTypeErrorRate'
'NullValueRate'
'OutOfBoundsRate' (required)

CategoricalPredictionDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Categorical' (required)
metric [Required] The categorical prediction drift metric to calculate. 'JensenShannonDistance'
'PearsonsChiSquaredTest'
'PopulationStabilityIndex' (required)

Classification

Name Description Value
cvSplitColumnNames Columns to use for CVSplit data. string[]
featurizationSettings Featurization inputs needed for AutoML job. TableVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. TableFixedParameters
limitSettings Execution constraints for AutoMLJob. TableVerticalLimitSettings
nCrossValidations Number of cross validation folds to be applied on training dataset
when validation dataset is not provided.
NCrossValidations
positiveLabel Positive label for binary metrics calculation. string
primaryMetric Primary metric for the task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. TableParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. TableSweepSettings
taskType [Required] Task type for AutoMLJob. 'Classification' (required)
testData Test data input. MLTableJobInput
testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
trainingSettings Inputs for training phase for an AutoML Job. ClassificationTrainingSettings
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. string

ClassificationModelPerformanceMetricThreshold

Name Description Value
metric [Required] The classification model performance to calculate. 'Accuracy'
'Precision'
'Recall' (required)
modelType [Required] Specifies the data type of the metric threshold. 'Classification' (required)

ClassificationTrainingSettings

Name Description Value
allowedTrainingAlgorithms Allowed models for classification task. String array containing any of:
'BernoulliNaiveBayes'
'DecisionTree'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LightGBM'
'LinearSVM'
'LogisticRegression'
'MultinomialNaiveBayes'
'RandomForest'
'SGD'
'SVM'
'XGBoostClassifier'
blockedTrainingAlgorithms Blocked models for classification task. String array containing any of:
'BernoulliNaiveBayes'
'DecisionTree'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LightGBM'
'LinearSVM'
'LogisticRegression'
'MultinomialNaiveBayes'
'RandomForest'
'SGD'
'SVM'
'XGBoostClassifier'
enableDnnTraining Enable recommendation of DNN models. bool
enableModelExplainability Flag to turn on explainability on best model. bool
enableOnnxCompatibleModels Flag for enabling onnx compatible models. bool
enableStackEnsemble Enable stack ensemble run. bool
enableVoteEnsemble Enable voting ensemble run. bool
ensembleModelDownloadTimeout During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
Configure this parameter with a higher value than 300 secs, if more time is needed.
string
stackEnsembleSettings Stack ensemble settings for stack ensemble run. StackEnsembleSettings
trainingMode TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'.
If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen.
If 'NonDistributed' then only non distributed algorithms are chosen.
'Auto'
'Distributed'
'NonDistributed'

ColumnTransformer

Name Description Value
fields Fields to apply transformer logic on. string[]
parameters Different properties to be passed to transformer.
Input expected is dictionary of key,value pairs in JSON format.
any

CommandJob

Name Description Value
autologgerSettings Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. AutologgerSettings
codeId ARM resource ID of the code asset. string
command [Required] The command to execute on startup of the job. eg. "python train.py" string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
distribution Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, Ray, or null. DistributionConfiguration
environmentId [Required] The ARM resource ID of the Environment specification for the job. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
environmentVariables Environment variables included in the job. CommandJobEnvironmentVariables
inputs Mapping of input data bindings used in the job. CommandJobInputs
jobType [Required] Specifies the type of job. 'Command' (required)
limits Command Job limit. CommandJobLimits
outputs Mapping of output data bindings used in the job. CommandJobOutputs
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. JobResourceConfiguration

CommandJobEnvironmentVariables

Name Description Value

CommandJobInputs

Name Description Value

CommandJobLimits

Name Description Value
jobLimitsType [Required] JobLimit type. 'Command'
'Sweep' (required)
timeout The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. string

CommandJobOutputs

Name Description Value

ComponentConfiguration

Name Description Value
pipelineSettings Pipeline settings, for things like ContinueRunOnStepFailure etc. any

CreateMonitorAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'CreateMonitor' (required)
monitorDefinition [Required] Defines the monitor. MonitorDefinition (required)

CronTrigger

Name Description Value
expression [Required] Specifies cron expression of schedule.
The expression should follow NCronTab format.
string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
triggerType [Required] 'Cron' (required)

CustomForecastHorizon

Name Description Value
mode [Required] Set forecast horizon value selection mode. 'Custom' (required)
value [Required] Forecast horizon value. int (required)

CustomMetricThreshold

Name Description Value
metric [Required] The user-defined metric to calculate. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

CustomModelFineTuning

Name Description Value
hyperParameters HyperParameters for fine tuning custom model. CustomModelFineTuningHyperParameters
modelProvider [Required] Enum to determine the type of fine tuning. 'Custom' (required)

CustomModelFineTuningHyperParameters

Name Description Value

CustomModelJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'custom_model' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

CustomModelJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'custom_model' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

CustomMonitoringSignal

Name Description Value
componentId [Required] ARM resource ID of the component resource used to calculate the custom metrics. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
inputAssets Monitoring assets to take as input. Key is the component input port name, value is the data asset. CustomMonitoringSignalInputAssets
inputs Extra component parameters to take as input. Key is the component literal input port name, value is the parameter value. CustomMonitoringSignalInputs
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. CustomMetricThreshold[] (required)
signalType [Required] Specifies the type of signal to monitor. 'Custom' (required)
workspaceConnection A list of metrics to calculate and their associated thresholds. MonitoringWorkspaceConnection

CustomMonitoringSignalInputAssets

Name Description Value

CustomMonitoringSignalInputs

Name Description Value

CustomNCrossValidations

Name Description Value
mode [Required] Mode for determining N-Cross validations. 'Custom' (required)
value [Required] N-Cross validations value. int (required)

CustomSeasonality

Name Description Value
mode [Required] Seasonality mode. 'Custom' (required)
value [Required] Seasonality value. int (required)

CustomTargetLags

Name Description Value
mode [Required] Set target lags mode - Auto/Custom 'Custom' (required)
values [Required] Set target lags values. int[] (required)

CustomTargetRollingWindowSize

Name Description Value
mode [Required] TargetRollingWindowSiz detection mode. 'Custom' (required)
value [Required] TargetRollingWindowSize value. int (required)

DatabaseSource

Name Description Value
query SQL Query statement for data import Database source string
sourceType [Required] Specifies the type of data. 'database' (required)
storedProcedure SQL StoredProcedure on data import Database source string
storedProcedureParams SQL StoredProcedure parameters DatabaseSourceStoredProcedureParamsItem[]
tableName Name of the table on data import Database source string

DatabaseSourceStoredProcedureParamsItem

Name Description Value

DataDriftMetricThresholdBase

Name Description Value
dataType Set to 'Categorical' for type CategoricalDataDriftMetricThreshold. Set to 'Numerical' for type NumericalDataDriftMetricThreshold. 'Categorical'
'Numerical' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

DataDriftMonitoringSignal

Name Description Value
dataSegment The data segment used for scoping on a subset of the data population. MonitoringDataSegment
featureDataTypeOverride A dictionary that maps feature names to their respective data types. DataDriftMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings The settings for computing feature importance. FeatureImportanceSettings
features The feature filter which identifies which feature to calculate drift over. MonitoringFeatureFilterBase
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. DataDriftMetricThresholdBase[] (required)
productionData [Required] The data which drift will be calculated for. MonitoringInputDataBase (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'DataDrift' (required)

DataDriftMonitoringSignalFeatureDataTypeOverride

Name Description Value

DataImport

Name Description Value
assetName Name of the asset for data import job to create string
autoDeleteSetting Specifies the lifecycle setting of managed data asset. AutoDeleteSetting
dataType [Required] Specifies the type of data. 'mltable'
'uri_file'
'uri_folder' (required)
dataUri [Required] Uri of the data. Example: https://go.microsoft.com/fwlink/?linkid=2202330 string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
description The asset description text. string
intellectualProperty Intellectual Property details. Used if data is an Intellectual Property. IntellectualProperty
isAnonymous If the name version are system generated (anonymous registration). For types where Stage is defined, when Stage is provided it will be used to populate IsAnonymous bool
isArchived Is the asset archived? For types where Stage is defined, when Stage is provided it will be used to populate IsArchived bool
properties The asset property dictionary. ResourceBaseProperties
source Source data of the asset to import from DataImportSource
stage Stage in the data lifecycle assigned to this data asset string
tags Tag dictionary. Tags can be added, removed, and updated. ResourceBaseTags

DataImportSource

Name Description Value
connection Workspace connection for data import source storage string
sourceType Set to 'database' for type DatabaseSource. Set to 'file_system' for type FileSystemSource. 'database'
'file_system' (required)

DataQualityMetricThresholdBase

Name Description Value
dataType Set to 'Categorical' for type CategoricalDataQualityMetricThreshold. Set to 'Numerical' for type NumericalDataQualityMetricThreshold. 'Categorical'
'Numerical' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

DataQualityMonitoringSignal

Name Description Value
featureDataTypeOverride A dictionary that maps feature names to their respective data types. DataQualityMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings The settings for computing feature importance. FeatureImportanceSettings
features The features to calculate drift over. MonitoringFeatureFilterBase
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. DataQualityMetricThresholdBase[] (required)
productionData [Required] The data produced by the production service which drift will be calculated for. MonitoringInputDataBase (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'DataQuality' (required)

DataQualityMonitoringSignalFeatureDataTypeOverride

Name Description Value

DistributionConfiguration

Name Description Value
distributionType Set to 'Mpi' for type Mpi. Set to 'PyTorch' for type PyTorch. Set to 'Ray' for type Ray. Set to 'TensorFlow' for type TensorFlow. 'Mpi'
'PyTorch'
'Ray'
'TensorFlow' (required)

EarlyTerminationPolicy

Name Description Value
delayEvaluation Number of intervals by which to delay the first evaluation. int
evaluationInterval Interval (number of runs) between policy evaluations. int
policyType Set to 'Bandit' for type BanditPolicy. Set to 'MedianStopping' for type MedianStoppingPolicy. Set to 'TruncationSelection' for type TruncationSelectionPolicy. 'Bandit'
'MedianStopping'
'TruncationSelection' (required)

EndpointScheduleAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'InvokeBatchEndpoint' (required)
endpointInvocationDefinition [Required] Defines Schedule action definition details.
<see href="TBD" />
any (required)

FeatureAttributionDriftMonitoringSignal

Name Description Value
featureDataTypeOverride A dictionary that maps feature names to their respective data types. FeatureAttributionDriftMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings [Required] The settings for computing feature importance. FeatureImportanceSettings (required)
metricThreshold [Required] A list of metrics to calculate and their associated thresholds. FeatureAttributionMetricThreshold (required)
productionData [Required] The data which drift will be calculated for. MonitoringInputDataBase[] (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'FeatureAttributionDrift' (required)

FeatureAttributionDriftMonitoringSignalFeatureDataTypeOverride

Name Description Value

FeatureAttributionMetricThreshold

Name Description Value
metric [Required] The feature attribution metric to calculate. 'NormalizedDiscountedCumulativeGain' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

FeatureImportanceSettings

Name Description Value
mode The mode of operation for computing feature importance. 'Disabled'
'Enabled'
targetColumn The name of the target column within the input data asset. string

FeatureSubset

Name Description Value
features [Required] The list of features to include. string[] (required)
filterType [Required] Specifies the feature filter to leverage when selecting features to calculate metrics over. 'FeatureSubset' (required)

FileSystemSource

Name Description Value
path Path on data import FileSystem source string
sourceType [Required] Specifies the type of data. 'file_system' (required)

FineTuningJob

Name Description Value
fineTuningDetails [Required] FineTuningVertical (required)
jobType [Required] Specifies the type of job. 'FineTuning' (required)
outputs [Required] FineTuningJobOutputs (required)

FineTuningJobOutputs

Name Description Value

FineTuningVertical

Name Description Value
model [Required] Input model for fine tuning. MLFlowModelJobInput (required)
modelProvider Set to 'AzureOpenAI' for type AzureOpenAiFineTuning. Set to 'Custom' for type CustomModelFineTuning. 'AzureOpenAI'
'Custom' (required)
taskType [Required] Fine tuning task type. 'ChatCompletion'
'ImageClassification'
'ImageInstanceSegmentation'
'ImageObjectDetection'
'QuestionAnswering'
'TextClassification'
'TextCompletion'
'TextSummarization'
'TextTranslation'
'TokenClassification'
'VideoMultiObjectTracking' (required)
trainingData [Required] Training data for fine tuning. JobInput (required)
validationData Validation data for fine tuning. JobInput

FixedInputData

Name Description Value
inputDataType [Required] Specifies the type of signal to monitor. 'Fixed' (required)

ForecastHorizon

Name Description Value
mode Set to 'Auto' for type AutoForecastHorizon. Set to 'Custom' for type CustomForecastHorizon. 'Auto'
'Custom' (required)

Forecasting

Name Description Value
cvSplitColumnNames Columns to use for CVSplit data. string[]
featurizationSettings Featurization inputs needed for AutoML job. TableVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. TableFixedParameters
forecastingSettings Forecasting task specific inputs. ForecastingSettings
limitSettings Execution constraints for AutoMLJob. TableVerticalLimitSettings
nCrossValidations Number of cross validation folds to be applied on training dataset
when validation dataset is not provided.
NCrossValidations
primaryMetric Primary metric for forecasting task. 'NormalizedMeanAbsoluteError'
'NormalizedRootMeanSquaredError'
'R2Score'
'SpearmanCorrelation'
searchSpace Search space for sampling different combinations of models and their hyperparameters. TableParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. TableSweepSettings
taskType [Required] Task type for AutoMLJob. 'Forecasting' (required)
testData Test data input. MLTableJobInput
testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
trainingSettings Inputs for training phase for an AutoML Job. ForecastingTrainingSettings
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. string

ForecastingSettings

Name Description Value
countryOrRegionForHolidays Country or region for holidays for forecasting tasks.
These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.
string
cvStepSize Number of periods between the origin time of one CV fold and the next fold. For
example, if CVStepSize = 3 for daily data, the origin time for each fold will be
three days apart.
int
featureLags Flag for generating lags for the numeric features with 'auto' or null. 'Auto'
'None'
featuresUnknownAtForecastTime The feature columns that are available for training but unknown at the time of forecast/inference.
If features_unknown_at_forecast_time is not set, it is assumed that all the feature columns in the dataset are known at inference time.
string[]
forecastHorizon The desired maximum forecast horizon in units of time-series frequency. ForecastHorizon
frequency When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. string
seasonality Set time series seasonality as an integer multiple of the series frequency.
If seasonality is set to 'auto', it will be inferred.
Seasonality
shortSeriesHandlingConfig The parameter defining how if AutoML should handle short time series. 'Auto'
'Drop'
'None'
'Pad'
targetAggregateFunction The function to be used to aggregate the time series target column to conform to a user specified frequency.
If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".
'Max'
'Mean'
'Min'
'None'
'Sum'
targetLags The number of past periods to lag from the target column. TargetLags
targetRollingWindowSize The number of past periods used to create a rolling window average of the target column. TargetRollingWindowSize
timeColumnName The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. string
timeSeriesIdColumnNames The names of columns used to group a timeseries. It can be used to create multiple series.
If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting.
string[]
useStl Configure STL Decomposition of the time-series target column. 'None'
'Season'
'SeasonTrend'

ForecastingTrainingSettings

Name Description Value
allowedTrainingAlgorithms Allowed models for forecasting task. String array containing any of:
'Arimax'
'AutoArima'
'Average'
'DecisionTree'
'ElasticNet'
'ExponentialSmoothing'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'Naive'
'Prophet'
'RandomForest'
'SeasonalAverage'
'SeasonalNaive'
'SGD'
'TCNForecaster'
'XGBoostRegressor'
blockedTrainingAlgorithms Blocked models for forecasting task. String array containing any of:
'Arimax'
'AutoArima'
'Average'
'DecisionTree'
'ElasticNet'
'ExponentialSmoothing'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'Naive'
'Prophet'
'RandomForest'
'SeasonalAverage'
'SeasonalNaive'
'SGD'
'TCNForecaster'
'XGBoostRegressor'
enableDnnTraining Enable recommendation of DNN models. bool
enableModelExplainability Flag to turn on explainability on best model. bool
enableOnnxCompatibleModels Flag for enabling onnx compatible models. bool
enableStackEnsemble Enable stack ensemble run. bool
enableVoteEnsemble Enable voting ensemble run. bool
ensembleModelDownloadTimeout During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
Configure this parameter with a higher value than 300 secs, if more time is needed.
string
stackEnsembleSettings Stack ensemble settings for stack ensemble run. StackEnsembleSettings
trainingMode TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'.
If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen.
If 'NonDistributed' then only non distributed algorithms are chosen.
'Auto'
'Distributed'
'NonDistributed'

GenerationSafetyQualityMetricThreshold

Name Description Value
metric [Required] Gets or sets the feature attribution metric to calculate. 'AcceptableCoherenceScorePerInstance'
'AcceptableFluencyScorePerInstance'
'AcceptableGroundednessScorePerInstance'
'AcceptableRelevanceScorePerInstance'
'AcceptableSimilarityScorePerInstance'
'AggregatedCoherencePassRate'
'AggregatedFluencyPassRate'
'AggregatedGroundednessPassRate'
'AggregatedRelevancePassRate'
'AggregatedSimilarityPassRate' (required)
threshold Gets or sets the threshold value.
If null, a default value will be set depending on the selected metric.
MonitoringThreshold

GenerationSafetyQualityMonitoringSignal

Name Description Value
metricThresholds [Required] Gets or sets the metrics to calculate and the corresponding thresholds. GenerationSafetyQualityMetricThreshold[] (required)
productionData Gets or sets the production data for computing metrics. MonitoringInputDataBase[]
samplingRate [Required] The sample rate of the production data, should be greater than 0 and at most 1. int (required)
signalType [Required] Specifies the type of signal to monitor. 'GenerationSafetyQuality' (required)
workspaceConnectionId Gets or sets the workspace connection ID used to connect to the content generation endpoint. string

GenerationTokenUsageMetricThreshold

Name Description Value
metric [Required] Gets or sets the feature attribution metric to calculate. 'TotalTokenCount'
'TotalTokenCountPerGroup' (required)
threshold Gets or sets the threshold value.
If null, a default value will be set depending on the selected metric.
MonitoringThreshold

GenerationTokenUsageSignal

Name Description Value
metricThresholds [Required] Gets or sets the metrics to calculate and the corresponding thresholds. GenerationTokenUsageMetricThreshold[] (required)
productionData Gets or sets the production data for computing metrics. MonitoringInputDataBase[]
samplingRate [Required] The sample rate of the production data, should be greater than 0 and at most 1. int (required)
signalType [Required] Specifies the type of signal to monitor. 'GenerationTokenStatistics' (required)

GridSamplingAlgorithm

Name Description Value
samplingAlgorithmType [Required] The algorithm used for generating hyperparameter values, along with configuration properties 'Grid' (required)

IdentityConfiguration

Name Description Value
identityType Set to 'AMLToken' for type AmlToken. Set to 'Managed' for type ManagedIdentity. Set to 'UserIdentity' for type UserIdentity. 'AMLToken'
'Managed'
'UserIdentity' (required)

ImageClassification

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsClassification
primaryMetric Primary metric to optimize for this task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsClassification[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageClassification' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageClassificationMultilabel

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsClassification
primaryMetric Primary metric to optimize for this task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'IOU'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsClassification[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageClassificationMultilabel' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageInstanceSegmentation

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsObjectDetection
primaryMetric Primary metric to optimize for this task. 'MeanAveragePrecision'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageInstanceSegmentation' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageLimitSettings

Name Description Value
maxConcurrentTrials Maximum number of concurrent AutoML iterations. int
maxTrials Maximum number of AutoML iterations. int
timeout AutoML job timeout. string

ImageModelDistributionSettingsClassification

Name Description Value
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. string
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
distributed Whether to use distributer training. string
earlyStopping Enable early stopping logic during training. string
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
string
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
string
enableOnnxNormalization Enable normalization when exporting ONNX model. string
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. string
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
string
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
string
learningRate Initial learning rate. Must be a float in the range [0, 1]. string
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. string
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. string
nesterov Enable nesterov when optimizer is 'sgd'. string
numberOfEpochs Number of training epochs. Must be a positive integer. string
numberOfWorkers Number of data loader workers. Must be a non-negative integer. string
optimizer Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. string
randomSeed Random seed to be used when using deterministic training. string
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. string
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. string
trainingBatchSize Training batch size. Must be a positive integer. string
trainingCropSize Image crop size that is input to the neural network for the training dataset. Must be a positive integer. string
validationBatchSize Validation batch size. Must be a positive integer. string
validationCropSize Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. string
validationResizeSize Image size to which to resize before cropping for validation dataset. Must be a positive integer. string
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. string
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. string
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. string
weightedLoss Weighted loss. The accepted values are 0 for no weighted loss.
1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
string

ImageModelDistributionSettingsObjectDetection

Name Description Value
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. string
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. string
boxDetectionsPerImage Maximum number of detections per image, for all classes. Must be a positive integer.
Note: This settings is not supported for the 'yolov5' algorithm.
string
boxScoreThreshold During inference, only return proposals with a classification score greater than
BoxScoreThreshold. Must be a float in the range[0, 1].
string
distributed Whether to use distributer training. string
earlyStopping Enable early stopping logic during training. string
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
string
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
string
enableOnnxNormalization Enable normalization when exporting ONNX model. string
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. string
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
string
imageSize Image size for train and validation. Must be a positive integer.
Note: The training run may get into CUDA OOM if the size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
string
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
string
learningRate Initial learning rate. Must be a float in the range [0, 1]. string
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. string
maxSize Maximum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
string
minSize Minimum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
string
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
modelSize Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
Note: training run may get into CUDA OOM if the model size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
string
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. string
multiScale Enable multi-scale image by varying image size by +/- 50%.
Note: training run may get into CUDA OOM if no sufficient GPU memory.
Note: This settings is only supported for the 'yolov5' algorithm.
string
nesterov Enable nesterov when optimizer is 'sgd'. string
nmsIouThreshold IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. string
numberOfEpochs Number of training epochs. Must be a positive integer. string
numberOfWorkers Number of data loader workers. Must be a non-negative integer. string
optimizer Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. string
randomSeed Random seed to be used when using deterministic training. string
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. string
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. string
tileGridSize The grid size to use for tiling each image. Note: TileGridSize must not be
None to enable small object detection logic. A string containing two integers in mxn format.
Note: This settings is not supported for the 'yolov5' algorithm.
string
tileOverlapRatio Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
Note: This settings is not supported for the 'yolov5' algorithm.
string
tilePredictionsNmsThreshold The IOU threshold to use to perform NMS while merging predictions from tiles and image.
Used in validation/ inference. Must be float in the range [0, 1].
Note: This settings is not supported for the 'yolov5' algorithm.
NMS: Non-maximum suppression
string
trainingBatchSize Training batch size. Must be a positive integer. string
validationBatchSize Validation batch size. Must be a positive integer. string
validationIouThreshold IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. string
validationMetricType Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. string
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. string
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. string
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. string

ImageModelSettingsClassification

Name Description Value
advancedSettings Settings for advanced scenarios. string
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. bool
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
checkpointFrequency Frequency to store model checkpoints. Must be a positive integer. int
checkpointModel The pretrained checkpoint model for incremental training. MLFlowModelJobInput
checkpointRunId The id of a previous run that has a pretrained checkpoint for incremental training. string
distributed Whether to use distributed training. bool
earlyStopping Enable early stopping logic during training. bool
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
int
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
int
enableOnnxNormalization Enable normalization when exporting ONNX model. bool
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. int
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
int
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
int
learningRate Initial learning rate. Must be a float in the range [0, 1]. int
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. 'None'
'Step'
'WarmupCosine'
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. int
nesterov Enable nesterov when optimizer is 'sgd'. bool
numberOfEpochs Number of training epochs. Must be a positive integer. int
numberOfWorkers Number of data loader workers. Must be a non-negative integer. int
optimizer Type of optimizer. 'Adam'
'Adamw'
'None'
'Sgd'
randomSeed Random seed to be used when using deterministic training. int
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. int
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. int
trainingBatchSize Training batch size. Must be a positive integer. int
trainingCropSize Image crop size that is input to the neural network for the training dataset. Must be a positive integer. int
validationBatchSize Validation batch size. Must be a positive integer. int
validationCropSize Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. int
validationResizeSize Image size to which to resize before cropping for validation dataset. Must be a positive integer. int
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. int
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. int
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. int
weightedLoss Weighted loss. The accepted values are 0 for no weighted loss.
1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
int

ImageModelSettingsObjectDetection

Name Description Value
advancedSettings Settings for advanced scenarios. string
amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'. bool
augmentations Settings for using Augmentations. string
beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. int
boxDetectionsPerImage Maximum number of detections per image, for all classes. Must be a positive integer.
Note: This settings is not supported for the 'yolov5' algorithm.
int
boxScoreThreshold During inference, only return proposals with a classification score greater than
BoxScoreThreshold. Must be a float in the range[0, 1].
int
checkpointFrequency Frequency to store model checkpoints. Must be a positive integer. int
checkpointModel The pretrained checkpoint model for incremental training. MLFlowModelJobInput
checkpointRunId The id of a previous run that has a pretrained checkpoint for incremental training. string
distributed Whether to use distributed training. bool
earlyStopping Enable early stopping logic during training. bool
earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
int
earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
int
enableOnnxNormalization Enable normalization when exporting ONNX model. bool
evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. int
gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
int
imageSize Image size for train and validation. Must be a positive integer.
Note: The training run may get into CUDA OOM if the size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
int
layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: /azure/machine-learning/how-to-auto-train-image-models.
int
learningRate Initial learning rate. Must be a float in the range [0, 1]. int
learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. 'None'
'Step'
'WarmupCosine'
logTrainingMetrics Enable computing and logging training metrics. 'Disable'
'Enable'
logValidationLoss Enable computing and logging validation loss. 'Disable'
'Enable'
maxSize Maximum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
int
minSize Minimum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
int
modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
/azure/machine-learning/how-to-auto-train-image-models.
string
modelSize Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
Note: training run may get into CUDA OOM if the model size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
'ExtraLarge'
'Large'
'Medium'
'None'
'Small'
momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. int
multiScale Enable multi-scale image by varying image size by +/- 50%.
Note: training run may get into CUDA OOM if no sufficient GPU memory.
Note: This settings is only supported for the 'yolov5' algorithm.
bool
nesterov Enable nesterov when optimizer is 'sgd'. bool
nmsIouThreshold IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. int
numberOfEpochs Number of training epochs. Must be a positive integer. int
numberOfWorkers Number of data loader workers. Must be a non-negative integer. int
optimizer Type of optimizer. 'Adam'
'Adamw'
'None'
'Sgd'
randomSeed Random seed to be used when using deterministic training. int
stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. int
stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer. int
tileGridSize The grid size to use for tiling each image. Note: TileGridSize must not be
None to enable small object detection logic. A string containing two integers in mxn format.
Note: This settings is not supported for the 'yolov5' algorithm.
string
tileOverlapRatio Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
Note: This settings is not supported for the 'yolov5' algorithm.
int
tilePredictionsNmsThreshold The IOU threshold to use to perform NMS while merging predictions from tiles and image.
Used in validation/ inference. Must be float in the range [0, 1].
Note: This settings is not supported for the 'yolov5' algorithm.
int
trainingBatchSize Training batch size. Must be a positive integer. int
validationBatchSize Validation batch size. Must be a positive integer. int
validationIouThreshold IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. int
validationMetricType Metric computation method to use for validation metrics. 'Coco'
'CocoVoc'
'None'
'Voc'
warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. int
warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. int
weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. int

ImageObjectDetection

Name Description Value
limitSettings [Required] Limit settings for the AutoML job. ImageLimitSettings (required)
modelSettings Settings used for training the model. ImageModelSettingsObjectDetection
primaryMetric Primary metric to optimize for this task. 'MeanAveragePrecision'
searchSpace Search space for sampling different combinations of models and their hyperparameters. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Model sweeping and hyperparameter sweeping related settings. ImageSweepSettings
taskType [Required] Task type for AutoMLJob. 'ImageObjectDetection' (required)
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int

ImageSweepSettings

Name Description Value
earlyTermination Type of early termination policy. EarlyTerminationPolicy
samplingAlgorithm [Required] Type of the hyperparameter sampling algorithms. 'Bayesian'
'Grid'
'Random' (required)

ImportDataAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'ImportData' (required)
dataImportDefinition [Required] Defines Schedule action definition details. DataImport (required)

IntellectualProperty

Name Description Value
protectionLevel Protection level of the Intellectual Property. 'All'
'None'
publisher [Required] Publisher of the Intellectual Property. Must be the same as Registry publisher name. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

JobBaseProperties

Name Description Value
componentId ARM resource ID of the component resource. string
computeId ARM resource ID of the compute resource. string
description The asset description text. string
displayName Display name of job. string
experimentName The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. string
identity Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null.
Defaults to AmlToken if null.
IdentityConfiguration
isArchived Is the asset archived? bool
jobType Set to 'AutoML' for type AutoMLJob. Set to 'Command' for type CommandJob. Set to 'FineTuning' for type FineTuningJob. Set to 'Labeling' for type LabelingJobProperties. Set to 'Pipeline' for type PipelineJob. Set to 'Spark' for type SparkJob. Set to 'Sweep' for type SweepJob. 'AutoML'
'Command'
'FineTuning'
'Labeling'
'Pipeline'
'Spark'
'Sweep' (required)
notificationSetting Notification setting for the job NotificationSetting
properties The asset property dictionary. ResourceBaseProperties
secretsConfiguration Configuration for secrets to be made available during runtime. JobBaseSecretsConfiguration
services List of JobEndpoints.
For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
JobBaseServices
tags Tag dictionary. Tags can be added, removed, and updated. ResourceBaseTags

JobBaseSecretsConfiguration

Name Description Value

JobBaseServices

Name Description Value

JobInput

Name Description Value
description Description for the input. string
jobInputType Set to 'custom_model' for type CustomModelJobInput. Set to 'literal' for type LiteralJobInput. Set to 'mlflow_model' for type MLFlowModelJobInput. Set to 'mltable' for type MLTableJobInput. Set to 'triton_model' for type TritonModelJobInput. Set to 'uri_file' for type UriFileJobInput. Set to 'uri_folder' for type UriFolderJobInput. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)

JobOutput

Name Description Value
description Description for the output. string
jobOutputType Set to 'custom_model' for type CustomModelJobOutput. Set to 'mlflow_model' for type MLFlowModelJobOutput. Set to 'mltable' for type MLTableJobOutput. Set to 'triton_model' for type TritonModelJobOutput. Set to 'uri_file' for type UriFileJobOutput. Set to 'uri_folder' for type UriFolderJobOutput. 'custom_model'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)

JobResourceConfiguration

Name Description Value
dockerArgs Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. string
instanceCount Optional number of instances or nodes used by the compute target. int
instanceType Optional type of VM used as supported by the compute target. string
locations Locations where the job can run. string[]
maxInstanceCount Optional max allowed number of instances or nodes to be used by the compute target.
For use with elastic training, currently supported by PyTorch distribution type only.
int
properties Additional properties bag. ResourceConfigurationProperties
shmSize Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). string

Constraints:
Pattern = \d+[bBkKmMgG]

JobScheduleAction

Name Description Value
actionType [Required] Specifies the action type of the schedule 'CreateJob' (required)
jobDefinition [Required] Defines Schedule action definition details. JobBaseProperties (required)

JobService

Name Description Value
endpoint Url for endpoint. string
jobServiceType Endpoint type. string
nodes Nodes that user would like to start the service on.
If Nodes is not set or set to null, the service will only be started on leader node.
Nodes
port Port for endpoint set by user. int
properties Additional properties to set on the endpoint. JobServiceProperties

JobServiceProperties

Name Description Value

LabelCategory

Name Description Value
classes Dictionary of label classes in this category. LabelCategoryClasses
displayName Display name of the label category. string
multiSelect Indicates whether it is allowed to select multiple classes in this category. 'Disabled'
'Enabled'

LabelCategoryClasses

Name Description Value

LabelClass

Name Description Value
displayName Display name of the label class. string
subclasses Dictionary of subclasses of the label class. LabelClassSubclasses

LabelClassSubclasses

Name Description Value

LabelingDataConfiguration

Name Description Value
dataId Resource Id of the data asset to perform labeling. string
incrementalDataRefresh Indicates whether to enable incremental data refresh. 'Disabled'
'Enabled'

LabelingJobImageProperties

Name Description Value
annotationType Annotation type of image labeling job. 'BoundingBox'
'Classification'
'InstanceSegmentation'
mediaType [Required] Media type of the job. 'Image' (required)

LabelingJobInstructions

Name Description Value
uri The link to a page with detailed labeling instructions for labelers. string

LabelingJobLabelCategories

Name Description Value

LabelingJobMediaProperties

Name Description Value
mediaType Set to 'Image' for type LabelingJobImageProperties. Set to 'Text' for type LabelingJobTextProperties. 'Image'
'Text' (required)

LabelingJobProperties

Name Description Value
dataConfiguration Configuration of data used in the job. LabelingDataConfiguration
jobInstructions Labeling instructions of the job. LabelingJobInstructions
jobType [Required] Specifies the type of job. 'Labeling' (required)
labelCategories Label categories of the job. LabelingJobLabelCategories
labelingJobMediaProperties Media type specific properties in the job. LabelingJobMediaProperties
mlAssistConfiguration Configuration of MLAssist feature in the job. MLAssistConfiguration

LabelingJobTextProperties

Name Description Value
annotationType Annotation type of text labeling job. 'Classification'
'NamedEntityRecognition'
mediaType [Required] Media type of the job. 'Text' (required)

LiteralJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'literal' (required)
value [Required] Literal value for the input. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

ManagedComputeIdentity

Name Description Value
computeIdentityType [Required] Monitor compute identity type enum. 'ManagedIdentity' (required)
identity Managed service identity (system assigned and/or user assigned identities) ManagedServiceIdentity

ManagedIdentity

Name Description Value
clientId Specifies a user-assigned identity by client ID. For system-assigned, do not set this field. string

Constraints:
Min length = 36
Max length = 36
Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
identityType [Required] Specifies the type of identity framework. 'Managed' (required)
objectId Specifies a user-assigned identity by object ID. For system-assigned, do not set this field. string

Constraints:
Min length = 36
Max length = 36
Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
resourceId Specifies a user-assigned identity by ARM resource ID. For system-assigned, do not set this field. string

ManagedServiceIdentity

Name Description Value
type Type of managed service identity (where both SystemAssigned and UserAssigned types are allowed). 'None'
'SystemAssigned'
'SystemAssigned,UserAssigned'
'UserAssigned' (required)
userAssignedIdentities The set of user assigned identities associated with the resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}. The dictionary values can be empty objects ({}) in requests. UserAssignedIdentities

MedianStoppingPolicy

Name Description Value
policyType [Required] Name of policy configuration 'MedianStopping' (required)

Microsoft.MachineLearningServices/workspaces/schedules

Name Description Value
name The resource name string

Constraints:
Pattern = ^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$ (required)
parent_id The ID of the resource that is the parent for this resource. ID for resource of type: workspaces
properties [Required] Additional attributes of the entity. ScheduleProperties (required)
type The resource type "Microsoft.MachineLearningServices/workspaces/schedules@2024-04-01-preview"

MLAssistConfiguration

Name Description Value
mlAssist Set to 'Disabled' for type MLAssistConfigurationDisabled. Set to 'Enabled' for type MLAssistConfigurationEnabled. 'Disabled'
'Enabled' (required)

MLAssistConfigurationDisabled

Name Description Value
mlAssist [Required] Indicates whether MLAssist feature is enabled. 'Disabled' (required)

MLAssistConfigurationEnabled

Name Description Value
inferencingComputeBinding [Required] AML compute binding used in inferencing. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
mlAssist [Required] Indicates whether MLAssist feature is enabled. 'Enabled' (required)
trainingComputeBinding [Required] AML compute binding used in training. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLFlowModelJobInput

Name Description Value
description Description for the input. string
jobInputType [Required] Specifies the type of job. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLFlowModelJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'mlflow_model' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLFlowModelJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'mlflow_model' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

MLTableJobInput

Name Description Value
description Description for the input. string
jobInputType [Required] Specifies the type of job. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLTableJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'mltable' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MLTableJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'mltable' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

ModelPerformanceMetricThresholdBase

Name Description Value
modelType Set to 'Classification' for type ClassificationModelPerformanceMetricThreshold. Set to 'Regression' for type RegressionModelPerformanceMetricThreshold. 'Classification'
'Regression' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

ModelPerformanceSignal

Name Description Value
dataSegment The data segment. MonitoringDataSegment
metricThreshold [Required] A list of metrics to calculate and their associated thresholds. ModelPerformanceMetricThresholdBase (required)
productionData [Required] The data produced by the production service which performance will be calculated for. MonitoringInputDataBase[] (required)
referenceData [Required] The reference data used as the basis to calculate model performance. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'ModelPerformance' (required)

MonitorComputeConfigurationBase

Name Description Value
computeType Set to 'ServerlessSpark' for type MonitorServerlessSparkCompute. 'ServerlessSpark' (required)

MonitorComputeIdentityBase

Name Description Value
computeIdentityType Set to 'AmlToken' for type AmlTokenComputeIdentity. Set to 'ManagedIdentity' for type ManagedComputeIdentity. 'AmlToken'
'ManagedIdentity' (required)

MonitorDefinition

Name Description Value
alertNotificationSettings The monitor's notification settings. MonitorNotificationSettings
computeConfiguration [Required] The ARM resource ID of the compute resource to run the monitoring job on. MonitorComputeConfigurationBase (required)
monitoringTarget The ARM resource ID of either the model or deployment targeted by this monitor. MonitoringTarget
signals [Required] The signals to monitor. MonitorDefinitionSignals (required)

MonitorDefinitionSignals

Name Description Value

MonitorEmailNotificationSettings

Name Description Value
emails This is the email recipient list which has a limitation of 499 characters in total. string[]

MonitoringDataSegment

Name Description Value
feature The feature to segment the data on. string
values Filters for only the specified values of the given segmented feature. string[]

MonitoringFeatureFilterBase

Name Description Value
filterType Set to 'AllFeatures' for type AllFeatures. Set to 'FeatureSubset' for type FeatureSubset. Set to 'TopNByAttribution' for type TopNFeaturesByAttribution. 'AllFeatures'
'FeatureSubset'
'TopNByAttribution' (required)

MonitoringInputDataBase

Name Description Value
columns Mapping of column names to special uses. MonitoringInputDataBaseColumns
dataContext The context metadata of the data source. string
inputDataType Set to 'Fixed' for type FixedInputData. Set to 'Rolling' for type RollingInputData. Set to 'Static' for type StaticInputData. 'Fixed'
'Rolling'
'Static' (required)
jobInputType [Required] Specifies the type of job. 'custom_model'
'literal'
'mlflow_model'
'mltable'
'triton_model'
'uri_file'
'uri_folder' (required)
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

MonitoringInputDataBaseColumns

Name Description Value

MonitoringSignalBase

Name Description Value
notificationTypes The current notification mode for this signal. String array containing any of:
'AmlNotification'
'AzureMonitor'
properties Property dictionary. Properties can be added, but not removed or altered. MonitoringSignalBaseProperties
signalType Set to 'Custom' for type CustomMonitoringSignal. Set to 'DataDrift' for type DataDriftMonitoringSignal. Set to 'DataQuality' for type DataQualityMonitoringSignal. Set to 'FeatureAttributionDrift' for type FeatureAttributionDriftMonitoringSignal. Set to 'GenerationSafetyQuality' for type GenerationSafetyQualityMonitoringSignal. Set to 'GenerationTokenStatistics' for type GenerationTokenUsageSignal. Set to 'ModelPerformance' for type ModelPerformanceSignal. Set to 'PredictionDrift' for type PredictionDriftMonitoringSignal. 'Custom'
'DataDrift'
'DataQuality'
'FeatureAttributionDrift'
'GenerationSafetyQuality'
'GenerationTokenStatistics'
'ModelPerformance'
'PredictionDrift' (required)

MonitoringSignalBaseProperties

Name Description Value

MonitoringTarget

Name Description Value
deploymentId The ARM resource ID of either the deployment targeted by this monitor. string
modelId The ARM resource ID of either the model targeted by this monitor. string
taskType [Required] The machine learning task type of the model. 'Classification'
'QuestionAnswering'
'Regression' (required)

MonitoringThreshold

Name Description Value
value The threshold value. If null, the set default is dependent on the metric type. int

MonitoringWorkspaceConnection

Name Description Value
environmentVariables The properties of a workspace service connection to store as environment variables in the submitted jobs.
Key is workspace connection property path, name is environment variable key.
MonitoringWorkspaceConnectionEnvironmentVariables
secrets The properties of a workspace service connection to store as secrets in the submitted jobs.
Key is workspace connection property path, name is secret key.
MonitoringWorkspaceConnectionSecrets

MonitoringWorkspaceConnectionEnvironmentVariables

Name Description Value

MonitoringWorkspaceConnectionSecrets

Name Description Value

MonitorNotificationSettings

Name Description Value
emailNotificationSettings The AML notification email settings. MonitorEmailNotificationSettings

MonitorServerlessSparkCompute

Name Description Value
computeIdentity [Required] The identity scheme leveraged to by the spark jobs running on serverless Spark. MonitorComputeIdentityBase (required)
computeType [Required] Specifies the type of signal to monitor. 'ServerlessSpark' (required)
instanceType [Required] The instance type running the Spark job. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
runtimeVersion [Required] The Spark runtime version. string

Constraints:
Min length = 1
Pattern = ^[0-9]+\.[0-9]+$ (required)

Mpi

Name Description Value
distributionType [Required] Specifies the type of distribution framework. 'Mpi' (required)
processCountPerInstance Number of processes per MPI node. int

NCrossValidations

Name Description Value
mode Set to 'Auto' for type AutoNCrossValidations. Set to 'Custom' for type CustomNCrossValidations. 'Auto'
'Custom' (required)

NlpFixedParameters

Name Description Value
gradientAccumulationSteps Number of steps to accumulate gradients over before running a backward pass. int
learningRate The learning rate for the training procedure. int
learningRateScheduler The type of learning rate schedule to use during the training procedure. 'Constant'
'ConstantWithWarmup'
'Cosine'
'CosineWithRestarts'
'Linear'
'None'
'Polynomial'
modelName The name of the model to train. string
numberOfEpochs Number of training epochs. int
trainingBatchSize The batch size for the training procedure. int
validationBatchSize The batch size to be used during evaluation. int
warmupRatio The warmup ratio, used alongside LrSchedulerType. int
weightDecay The weight decay for the training procedure. int

NlpParameterSubspace

Name Description Value
gradientAccumulationSteps Number of steps to accumulate gradients over before running a backward pass. string
learningRate The learning rate for the training procedure. string
learningRateScheduler The type of learning rate schedule to use during the training procedure. string
modelName The name of the model to train. string
numberOfEpochs Number of training epochs. string
trainingBatchSize The batch size for the training procedure. string
validationBatchSize The batch size to be used during evaluation. string
warmupRatio The warmup ratio, used alongside LrSchedulerType. string
weightDecay The weight decay for the training procedure. string

NlpSweepSettings

Name Description Value
earlyTermination Type of early termination policy for the sweeping job. EarlyTerminationPolicy
samplingAlgorithm [Required] Type of sampling algorithm. 'Bayesian'
'Grid'
'Random' (required)

NlpVerticalFeaturizationSettings

Name Description Value
datasetLanguage Dataset language, useful for the text data. string

NlpVerticalLimitSettings

Name Description Value
maxConcurrentTrials Maximum Concurrent AutoML iterations. int
maxNodes Maximum nodes to use for the experiment. int
maxTrials Number of AutoML iterations. int
timeout AutoML job timeout. string
trialTimeout Timeout for individual HD trials. string

Nodes

Name Description Value
nodesValueType Set to 'All' for type AllNodes. 'All' (required)

NotificationSetting

Name Description Value
emailOn Send email notification to user on specified notification type String array containing any of:
'JobCancelled'
'JobCompleted'
'JobFailed'
emails This is the email recipient list which has a limitation of 499 characters in total concat with comma separator string[]
webhooks Send webhook callback to a service. Key is a user-provided name for the webhook. NotificationSettingWebhooks

NotificationSettingWebhooks

Name Description Value

NumericalDataDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Numerical' (required)
metric [Required] The numerical data drift metric to calculate. 'JensenShannonDistance'
'NormalizedWassersteinDistance'
'PopulationStabilityIndex'
'TwoSampleKolmogorovSmirnovTest' (required)

NumericalDataQualityMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Numerical' (required)
metric [Required] The numerical data quality metric to calculate. 'DataTypeErrorRate'
'NullValueRate'
'OutOfBoundsRate' (required)

NumericalPredictionDriftMetricThreshold

Name Description Value
dataType [Required] Specifies the data type of the metric threshold. 'Numerical' (required)
metric [Required] The numerical prediction drift metric to calculate. 'JensenShannonDistance'
'NormalizedWassersteinDistance'
'PopulationStabilityIndex'
'TwoSampleKolmogorovSmirnovTest' (required)

Objective

Name Description Value
goal [Required] Defines supported metric goals for hyperparameter tuning 'Maximize'
'Minimize' (required)
primaryMetric [Required] Name of the metric to optimize. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

PipelineJob

Name Description Value
inputs Inputs for the pipeline job. PipelineJobInputs
jobs Jobs construct the Pipeline Job. PipelineJobJobs
jobType [Required] Specifies the type of job. 'Pipeline' (required)
outputs Outputs for the pipeline job PipelineJobOutputs
settings Pipeline settings, for things like ContinueRunOnStepFailure etc. any
sourceJobId ARM resource ID of source job. string

PipelineJobInputs

Name Description Value

PipelineJobJobs

Name Description Value

PipelineJobOutputs

Name Description Value

PredictionDriftMetricThresholdBase

Name Description Value
dataType Set to 'Categorical' for type CategoricalPredictionDriftMetricThreshold. Set to 'Numerical' for type NumericalPredictionDriftMetricThreshold. 'Categorical'
'Numerical' (required)
threshold The threshold value. If null, a default value will be set depending on the selected metric. MonitoringThreshold

PredictionDriftMonitoringSignal

Name Description Value
featureDataTypeOverride A dictionary that maps feature names to their respective data types. PredictionDriftMonitoringSignalFeatureDataTypeOverride
metricThresholds [Required] A list of metrics to calculate and their associated thresholds. PredictionDriftMetricThresholdBase[] (required)
productionData [Required] The data which drift will be calculated for. MonitoringInputDataBase (required)
referenceData [Required] The data to calculate drift against. MonitoringInputDataBase (required)
signalType [Required] Specifies the type of signal to monitor. 'PredictionDrift' (required)

PredictionDriftMonitoringSignalFeatureDataTypeOverride

Name Description Value

PyTorch

Name Description Value
distributionType [Required] Specifies the type of distribution framework. 'PyTorch' (required)
processCountPerInstance Number of processes per node. int

QueueSettings

Name Description Value
jobTier Controls the compute job tier 'Basic'
'Null'
'Premium'
'Spot'
'Standard'
priority Controls the priority of the job on a compute. int

RandomSamplingAlgorithm

Name Description Value
logbase An optional positive number or e in string format to be used as base for log based random sampling string
rule The specific type of random algorithm 'Random'
'Sobol'
samplingAlgorithmType [Required] The algorithm used for generating hyperparameter values, along with configuration properties 'Random' (required)
seed An optional integer to use as the seed for random number generation int

Ray

Name Description Value
address The address of Ray head node. string
dashboardPort The port to bind the dashboard server to. int
distributionType [Required] Specifies the type of distribution framework. 'Ray' (required)
headNodeAdditionalArgs Additional arguments passed to ray start in head node. string
includeDashboard Provide this argument to start the Ray dashboard GUI. bool
port The port of the head ray process. int
workerNodeAdditionalArgs Additional arguments passed to ray start in worker node. string

RecurrenceSchedule

Name Description Value
hours [Required] List of hours for the schedule. int[] (required)
minutes [Required] List of minutes for the schedule. int[] (required)
monthDays List of month days for the schedule int[]
weekDays List of days for the schedule. String array containing any of:
'Friday'
'Monday'
'Saturday'
'Sunday'
'Thursday'
'Tuesday'
'Wednesday'

RecurrenceTrigger

Name Description Value
frequency [Required] The frequency to trigger schedule. 'Day'
'Hour'
'Minute'
'Month'
'Week' (required)
interval [Required] Specifies schedule interval in conjunction with frequency int (required)
schedule The recurrence schedule. RecurrenceSchedule
triggerType [Required] 'Recurrence' (required)

Regression

Name Description Value
cvSplitColumnNames Columns to use for CVSplit data. string[]
featurizationSettings Featurization inputs needed for AutoML job. TableVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. TableFixedParameters
limitSettings Execution constraints for AutoMLJob. TableVerticalLimitSettings
nCrossValidations Number of cross validation folds to be applied on training dataset
when validation dataset is not provided.
NCrossValidations
primaryMetric Primary metric for regression task. 'NormalizedMeanAbsoluteError'
'NormalizedRootMeanSquaredError'
'R2Score'
'SpearmanCorrelation'
searchSpace Search space for sampling different combinations of models and their hyperparameters. TableParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. TableSweepSettings
taskType [Required] Task type for AutoMLJob. 'Regression' (required)
testData Test data input. MLTableJobInput
testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
trainingSettings Inputs for training phase for an AutoML Job. RegressionTrainingSettings
validationData Validation data inputs. MLTableJobInput
validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
Values between (0.0 , 1.0)
Applied when validation dataset is not provided.
int
weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. string

RegressionModelPerformanceMetricThreshold

Name Description Value
metric [Required] The regression model performance metric to calculate. 'MeanAbsoluteError'
'MeanSquaredError'
'RootMeanSquaredError' (required)
modelType [Required] Specifies the data type of the metric threshold. 'Regression' (required)

RegressionTrainingSettings

Name Description Value
allowedTrainingAlgorithms Allowed models for regression task. String array containing any of:
'DecisionTree'
'ElasticNet'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'RandomForest'
'SGD'
'XGBoostRegressor'
blockedTrainingAlgorithms Blocked models for regression task. String array containing any of:
'DecisionTree'
'ElasticNet'
'ExtremeRandomTrees'
'GradientBoosting'
'KNN'
'LassoLars'
'LightGBM'
'RandomForest'
'SGD'
'XGBoostRegressor'
enableDnnTraining Enable recommendation of DNN models. bool
enableModelExplainability Flag to turn on explainability on best model. bool
enableOnnxCompatibleModels Flag for enabling onnx compatible models. bool
enableStackEnsemble Enable stack ensemble run. bool
enableVoteEnsemble Enable voting ensemble run. bool
ensembleModelDownloadTimeout During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
Configure this parameter with a higher value than 300 secs, if more time is needed.
string
stackEnsembleSettings Stack ensemble settings for stack ensemble run. StackEnsembleSettings
trainingMode TrainingMode mode - Setting to 'auto' is same as setting it to 'non-distributed' for now, however in the future may result in mixed mode or heuristics based mode selection. Default is 'auto'.
If 'Distributed' then only distributed featurization is used and distributed algorithms are chosen.
If 'NonDistributed' then only non distributed algorithms are chosen.
'Auto'
'Distributed'
'NonDistributed'

ResourceBaseProperties

Name Description Value

ResourceBaseProperties

Name Description Value

ResourceBaseProperties

Name Description Value

ResourceBaseTags

Name Description Value

ResourceBaseTags

Name Description Value

ResourceBaseTags

Name Description Value

ResourceConfigurationProperties

Name Description Value

RollingInputData

Name Description Value
inputDataType [Required] Specifies the type of signal to monitor. 'Rolling' (required)
preprocessingComponentId The ARM resource ID of the component resource used to preprocess the data. string
windowOffset [Required] The time offset between the end of the data window and the monitor's current run time. string (required)
windowSize [Required] The size of the trailing data window. string (required)

SamplingAlgorithm

Name Description Value
samplingAlgorithmType Set to 'Bayesian' for type BayesianSamplingAlgorithm. Set to 'Grid' for type GridSamplingAlgorithm. Set to 'Random' for type RandomSamplingAlgorithm. 'Bayesian'
'Grid'
'Random' (required)

ScheduleActionBase

Name Description Value
actionType Set to 'CreateJob' for type JobScheduleAction. Set to 'CreateMonitor' for type CreateMonitorAction. Set to 'ImportData' for type ImportDataAction. Set to 'InvokeBatchEndpoint' for type EndpointScheduleAction. 'CreateJob'
'CreateMonitor'
'ImportData'
'InvokeBatchEndpoint' (required)

ScheduleProperties

Name Description Value
action [Required] Specifies the action of the schedule ScheduleActionBase (required)
description The asset description text. string
displayName Display name of schedule. string
isEnabled Is the schedule enabled? bool
properties The asset property dictionary. ResourceBaseProperties
tags Tag dictionary. Tags can be added, removed, and updated. ResourceBaseTags
trigger [Required] Specifies the trigger details TriggerBase (required)

Seasonality

Name Description Value
mode Set to 'Auto' for type AutoSeasonality. Set to 'Custom' for type CustomSeasonality. 'Auto'
'Custom' (required)

SecretConfiguration

Name Description Value
uri Secret Uri.
Sample Uri : https://myvault.vault.azure.net/secrets/mysecretname/secretversion
string
workspaceSecretName Name of secret in workspace key vault. string

SparkJob

Name Description Value
archives Archive files used in the job. string[]
args Arguments for the job. string
codeId [Required] ARM resource ID of the code asset. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
conf Spark configured properties. SparkJobConf
entry [Required] The entry to execute on startup of the job. SparkJobEntry (required)
environmentId The ARM resource ID of the Environment specification for the job. string
environmentVariables Environment variables included in the job. SparkJobEnvironmentVariables
files Files used in the job. string[]
inputs Mapping of input data bindings used in the job. SparkJobInputs
jars Jar files used in the job. string[]
jobType [Required] Specifies the type of job. 'Spark' (required)
outputs Mapping of output data bindings used in the job. SparkJobOutputs
pyFiles Python files used in the job. string[]
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. SparkResourceConfiguration

SparkJobConf

Name Description Value

SparkJobEntry

Name Description Value
sparkJobEntryType Set to 'SparkJobPythonEntry' for type SparkJobPythonEntry. Set to 'SparkJobScalaEntry' for type SparkJobScalaEntry. 'SparkJobPythonEntry'
'SparkJobScalaEntry' (required)

SparkJobEnvironmentVariables

Name Description Value

SparkJobInputs

Name Description Value

SparkJobOutputs

Name Description Value

SparkJobPythonEntry

Name Description Value
file [Required] Relative python file path for job entry point. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
sparkJobEntryType [Required] Type of the job's entry point. 'SparkJobPythonEntry' (required)

SparkJobScalaEntry

Name Description Value
className [Required] Scala class name used as entry point. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
sparkJobEntryType [Required] Type of the job's entry point. 'SparkJobScalaEntry' (required)

SparkResourceConfiguration

Name Description Value
instanceType Optional type of VM used as supported by the compute target. string
runtimeVersion Version of spark runtime used for the job. string

StackEnsembleSettings

Name Description Value
stackMetaLearnerKWargs Optional parameters to pass to the initializer of the meta-learner. any
stackMetaLearnerTrainPercentage Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. int
stackMetaLearnerType The meta-learner is a model trained on the output of the individual heterogeneous models. 'ElasticNet'
'ElasticNetCV'
'LightGBMClassifier'
'LightGBMRegressor'
'LinearRegression'
'LogisticRegression'
'LogisticRegressionCV'
'None'

StaticInputData

Name Description Value
inputDataType [Required] Specifies the type of signal to monitor. 'Static' (required)
preprocessingComponentId The ARM resource ID of the component resource used to preprocess the data. string
windowEnd [Required] The end date of the data window. string (required)
windowStart [Required] The start date of the data window. string (required)

SweepJob

Name Description Value
componentConfiguration Component Configuration for sweep over component ComponentConfiguration
earlyTermination Early termination policies enable canceling poor-performing runs before they complete EarlyTerminationPolicy
inputs Mapping of input data bindings used in the job. SweepJobInputs
jobType [Required] Specifies the type of job. 'Sweep' (required)
limits Sweep Job limit. SweepJobLimits
objective [Required] Optimization objective. Objective (required)
outputs Mapping of output data bindings used in the job. SweepJobOutputs
queueSettings Queue settings for the job QueueSettings
resources Compute Resource configuration for the job. JobResourceConfiguration
samplingAlgorithm [Required] The hyperparameter sampling algorithm SamplingAlgorithm (required)
searchSpace [Required] A dictionary containing each parameter and its distribution. The dictionary key is the name of the parameter any (required)
trial [Required] Trial component definition. TrialComponent (required)

SweepJobInputs

Name Description Value

SweepJobLimits

Name Description Value
jobLimitsType [Required] JobLimit type. 'Command'
'Sweep' (required)
maxConcurrentTrials Sweep Job max concurrent trials. int
maxTotalTrials Sweep Job max total trials. int
timeout The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. string
trialTimeout Sweep Job Trial timeout value. string

SweepJobOutputs

Name Description Value

TableFixedParameters

Name Description Value
booster Specify the boosting type, e.g gbdt for XGBoost. string
boostingType Specify the boosting type, e.g gbdt for LightGBM. string
growPolicy Specify the grow policy, which controls the way new nodes are added to the tree. string
learningRate The learning rate for the training procedure. int
maxBin Specify the Maximum number of discrete bins to bucket continuous features . int
maxDepth Specify the max depth to limit the tree depth explicitly. int
maxLeaves Specify the max leaves to limit the tree leaves explicitly. int
minDataInLeaf The minimum number of data per leaf. int
minSplitGain Minimum loss reduction required to make a further partition on a leaf node of the tree. int
modelName The name of the model to train. string
nEstimators Specify the number of trees (or rounds) in an model. int
numLeaves Specify the number of leaves. int
preprocessorName The name of the preprocessor to use. string
regAlpha L1 regularization term on weights. int
regLambda L2 regularization term on weights. int
subsample Subsample ratio of the training instance. int
subsampleFreq Frequency of subsample. int
treeMethod Specify the tree method. string
withMean If true, center before scaling the data with StandardScalar. bool
withStd If true, scaling the data with Unit Variance with StandardScalar. bool

TableParameterSubspace

Name Description Value
booster Specify the boosting type, e.g gbdt for XGBoost. string
boostingType Specify the boosting type, e.g gbdt for LightGBM. string
growPolicy Specify the grow policy, which controls the way new nodes are added to the tree. string
learningRate The learning rate for the training procedure. string
maxBin Specify the Maximum number of discrete bins to bucket continuous features . string
maxDepth Specify the max depth to limit the tree depth explicitly. string
maxLeaves Specify the max leaves to limit the tree leaves explicitly. string
minDataInLeaf The minimum number of data per leaf. string
minSplitGain Minimum loss reduction required to make a further partition on a leaf node of the tree. string
modelName The name of the model to train. string
nEstimators Specify the number of trees (or rounds) in an model. string
numLeaves Specify the number of leaves. string
preprocessorName The name of the preprocessor to use. string
regAlpha L1 regularization term on weights. string
regLambda L2 regularization term on weights. string
subsample Subsample ratio of the training instance. string
subsampleFreq Frequency of subsample string
treeMethod Specify the tree method. string
withMean If true, center before scaling the data with StandardScalar. string
withStd If true, scaling the data with Unit Variance with StandardScalar. string

TableSweepSettings

Name Description Value
earlyTermination Type of early termination policy for the sweeping job. EarlyTerminationPolicy
samplingAlgorithm [Required] Type of sampling algorithm. 'Bayesian'
'Grid'
'Random' (required)

TableVerticalFeaturizationSettings

Name Description Value
blockedTransformers These transformers shall not be used in featurization. String array containing any of:
'CatTargetEncoder'
'CountVectorizer'
'HashOneHotEncoder'
'LabelEncoder'
'NaiveBayes'
'OneHotEncoder'
'TextTargetEncoder'
'TfIdf'
'WoETargetEncoder'
'WordEmbedding'
columnNameAndTypes Dictionary of column name and its type (int, float, string, datetime etc). TableVerticalFeaturizationSettingsColumnNameAndTypes
datasetLanguage Dataset language, useful for the text data. string
enableDnnFeaturization Determines whether to use Dnn based featurizers for data featurization. bool
mode Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
If 'Off' is selected then no featurization is done.
If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
'Auto'
'Custom'
'Off'
transformerParams User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. TableVerticalFeaturizationSettingsTransformerParams

TableVerticalFeaturizationSettingsColumnNameAndTypes

Name Description Value

TableVerticalFeaturizationSettingsTransformerParams

Name Description Value

TableVerticalLimitSettings

Name Description Value
enableEarlyTermination Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. bool
exitScore Exit score for the AutoML job. int
maxConcurrentTrials Maximum Concurrent iterations. int
maxCoresPerTrial Max cores per iteration. int
maxNodes Maximum nodes to use for the experiment. int
maxTrials Number of iterations. int
sweepConcurrentTrials Number of concurrent sweeping runs that user wants to trigger. int
sweepTrials Number of sweeping runs that user wants to trigger. int
timeout AutoML job timeout. string
trialTimeout Iteration timeout. string

TargetLags

Name Description Value
mode Set to 'Auto' for type AutoTargetLags. Set to 'Custom' for type CustomTargetLags. 'Auto'
'Custom' (required)

TargetRollingWindowSize

Name Description Value
mode Set to 'Auto' for type AutoTargetRollingWindowSize. Set to 'Custom' for type CustomTargetRollingWindowSize. 'Auto'
'Custom' (required)

TensorFlow

Name Description Value
distributionType [Required] Specifies the type of distribution framework. 'TensorFlow' (required)
parameterServerCount Number of parameter server tasks. int
workerCount Number of workers. If not specified, will default to the instance count. int

TextClassification

Name Description Value
featurizationSettings Featurization inputs needed for AutoML job. NlpVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. NlpFixedParameters
limitSettings Execution constraints for AutoMLJob. NlpVerticalLimitSettings
primaryMetric Primary metric for Text-Classification task. 'Accuracy'
'AUCWeighted'
'AveragePrecisionScoreWeighted'
'NormMacroRecall'
'PrecisionScoreWeighted'
searchSpace Search space for sampling different combinations of models and their hyperparameters. NlpParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. NlpSweepSettings
taskType [Required] Task type for AutoMLJob. 'TextClassification' (required)
validationData Validation data inputs. MLTableJobInput

TextClassificationMultilabel

Name Description Value
featurizationSettings Featurization inputs needed for AutoML job. NlpVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. NlpFixedParameters
limitSettings Execution constraints for AutoMLJob. NlpVerticalLimitSettings
searchSpace Search space for sampling different combinations of models and their hyperparameters. NlpParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. NlpSweepSettings
taskType [Required] Task type for AutoMLJob. 'TextClassificationMultilabel' (required)
validationData Validation data inputs. MLTableJobInput

TextNer

Name Description Value
featurizationSettings Featurization inputs needed for AutoML job. NlpVerticalFeaturizationSettings
fixedParameters Model/training parameters that will remain constant throughout training. NlpFixedParameters
limitSettings Execution constraints for AutoMLJob. NlpVerticalLimitSettings
searchSpace Search space for sampling different combinations of models and their hyperparameters. NlpParameterSubspace[]
sweepSettings Settings for model sweeping and hyperparameter tuning. NlpSweepSettings
taskType [Required] Task type for AutoMLJob. 'TextNER' (required)
validationData Validation data inputs. MLTableJobInput

TopNFeaturesByAttribution

Name Description Value
filterType [Required] Specifies the feature filter to leverage when selecting features to calculate metrics over. 'TopNByAttribution' (required)
top The number of top features to include. int

TrialComponent

Name Description Value
codeId ARM resource ID of the code asset. string
command [Required] The command to execute on startup of the job. eg. "python train.py" string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
distribution Distribution configuration of the job. If set, this should be one of Mpi, Tensorflow, PyTorch, or null. DistributionConfiguration
environmentId [Required] The ARM resource ID of the Environment specification for the job. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)
environmentVariables Environment variables included in the job. TrialComponentEnvironmentVariables
resources Compute Resource configuration for the job. JobResourceConfiguration

TrialComponentEnvironmentVariables

Name Description Value

TriggerBase

Name Description Value
endTime Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601.
Recommented format would be "2022-06-01T00:00:01"
If not present, the schedule will run indefinitely
string
startTime Specifies start time of schedule in ISO 8601 format, but without a UTC offset. string
timeZone Specifies time zone in which the schedule runs.
TimeZone should follow Windows time zone format. Refer: /windows-hardware/manufacture/desktop/default-time-zones?view=windows-11
string
triggerType Set to 'Cron' for type CronTrigger. Set to 'Recurrence' for type RecurrenceTrigger. 'Cron'
'Recurrence' (required)

TritonModelJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'triton_model' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

TritonModelJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'triton_model' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

TruncationSelectionPolicy

Name Description Value
policyType [Required] Name of policy configuration 'TruncationSelection' (required)
truncationPercentage The percentage of runs to cancel at each evaluation interval. int

UriFileJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'uri_file' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

UriFileJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'uri_file' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

UriFolderJobInput

Name Description Value
jobInputType [Required] Specifies the type of job. 'uri_folder' (required)
mode Input Asset Delivery Mode. 'Direct'
'Download'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
pathOnCompute Input Asset Delivery Path. string
uri [Required] Input Asset URI. string

Constraints:
Min length = 1
Pattern = [a-zA-Z0-9_] (required)

UriFolderJobOutput

Name Description Value
assetName Output Asset Name. string
assetVersion Output Asset Version. string
autoDeleteSetting Auto delete setting of output data asset. AutoDeleteSetting
jobOutputType [Required] Specifies the type of job. 'uri_folder' (required)
mode Output Asset Delivery Mode. 'Direct'
'ReadWriteMount'
'Upload'
pathOnCompute Output Asset Delivery Path. string
uri Output Asset URI. string

UserAssignedIdentities

Name Description Value

UserAssignedIdentity

Name Description Value

UserIdentity

Name Description Value
identityType [Required] Specifies the type of identity framework. 'UserIdentity' (required)

Webhook

Name Description Value
eventType Send callback on a specified notification event string
webhookType Set to 'AzureDevOps' for type AzureDevOpsWebhook. 'AzureDevOps' (required)