az ml model
Note
This reference is part of the ml extension for the Azure CLI (version 2.15.0 or higher). The extension will automatically install the first time you run an az ml model command. Learn more about extensions.
Manage Azure ML models.
Azure ML models consist of the binary file(s) that represent a machine learning model and any corresponding metadata. These models can be used in endpoint deployments for real-time and batch inference.
Commands
Name | Description | Type | Status |
---|---|---|---|
az ml model archive |
Archive a model. |
Extension | GA |
az ml model create |
Create a model. |
Extension | GA |
az ml model download |
Download all model-related files. |
Extension | GA |
az ml model list |
List models in a workspace/registry. If you are using a registry, replace |
Extension | GA |
az ml model package |
Package a model into an environment. |
Extension | Preview |
az ml model restore |
Restore an archived model. |
Extension | GA |
az ml model share |
Share a specific model from workspace to registry. |
Extension | GA |
az ml model show |
Show details for a model in a workspace/registry. If you are using a registry, replace |
Extension | GA |
az ml model update |
Update a model in a workspace/registry. |
Extension | GA |
az ml model archive
Archive a model.
Archiving a model will hide it by default from list queries (az ml model list
). You can still continue to reference and use an archived model in your workflows. You can archive either a model container or a specific model version. Archiving a model container will archive all versions of the model under that given name. You can restore an archived model using az ml model restore
. If the entire model container is archived, you cannot restore individual versions of the model - you will need to restore the model container.
az ml model archive --name
[--label]
[--registry-name]
[--resource-group]
[--version]
[--workspace-name]
Examples
Archive a model container (archives all versions of that model)
az ml model archive --name my-model --resource-group my-resource-group --workspace-name my-workspace
Archive a specific model version
az ml model archive --name my-model --version 1 --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of the model.
Optional Parameters
Label of the model.
If provided, the command will target the registry instead of a workspace. Hence resource group and workspace won't be required.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Version of the model.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml model create
Create a model.
Models can be created from a local file, local directory, datastore or job outputs. The created model will be tracked in the workspace/registry under the specified name and version. If you are using a registry, replace --workspace-name my-workspace
with the --registry-name <registry-name>
option.
az ml model create [--datastore]
[--description]
[--file]
[--name]
[--no-wait]
[--path]
[--registry-name]
[--resource-group]
[--set]
[--stage]
[--tags]
[--type]
[--version]
[--workspace-name]
Examples
Create a model from a YAML specification file
az ml model create --file model.yml --resource-group my-resource-group --workspace-name my-workspace
Create a model from a local folder using command options
az ml model create --name my-model --version 1 --path ./my-model --resource-group my-resource-group --workspace-name my-workspace
Create a model using mlflow run URI format 'runs:/<run-id>/<path-to-model-relative-to-the-root-of-the-artifact-location>' and command options
az ml model create --name my-model --version 1 --path runs:/c42d2507-4953-4a7c-a4c1-2b5bfe0ac64e/model/ --type mlflow_model --resource-group my-resource-group --workspace-name my-workspace
Create a model from a named job output using azureml job URI format 'azureml://jobs/<job-name>/outputs/<named-output>/paths/<path-to-model-relative-to-the-named-output-location>' and command options. The default named output is artifacts
az ml model create --name my-model --version 1 --path azureml://jobs/c42d2507-4953-4a7c-a4c1-2b5bfe0ac64e/outputs/artifacts/paths/model/ --resource-group my-resource-group --workspace-name my-workspace
Create a model from a datastore 'azureml://datastores/<datastore-name>/paths/<path-to-model-relative-to-the-root-of-the-datastore-location>' using command options
az ml model create --name my-model --version 1 --path azureml://datastores/myblobstore/paths/models/cifar10/cifar.pt --resource-group my-resource-group --workspace-name my-workspace
Optional Parameters
The datastore to upload the local artifact to.
Description of the model.
Local path to the YAML file containing the Azure ML model specification. The YAML reference docs for model can be found at: https://aka.ms/ml-cli-v2-model-yaml-reference.
Name of the model.
Do not wait for the long-running operation to finish.
Path to the model file(s). This can be either a local or a remote location. If specified, --name/-n and --version/-v must also be provided.
If provided, the command will target the registry instead of a workspace. Hence resource group and workspace won't be required.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Update an object by specifying a property path and value to set. Example: --set property1.property2=value.
Stage of the model.
Space-separated key-value pairs for the tags of the object.
Type of the model, allowed values are custom_model, mlflow_model and triton_model. The default type is custom_model.
Version of the model.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml model download
Download all model-related files.
The files will be downloaded into a folder named after the model's name. If you are using a registry, replace --workspace-name my-workspace
with the --registry-name <registry-name>
option.
az ml model download --name
--version
[--download-path]
[--registry-name]
[--resource-group]
[--workspace-name]
Examples
Download a model with the specified name and version
az ml model download --name my-model --version 1 --resource-group my-resource-group --workspace-name my-workspace
Download a model with the specified name and version, into a specified local path
az ml model download --name my-model --version 1 --download-path local_path --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of the model.
Version of the model.
Optional Parameters
Path to download the model files, defaults to the current working directory.
If provided, the command will target the registry instead of a workspace. Hence resource group and workspace won't be required.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml model list
List models in a workspace/registry. If you are using a registry, replace --workspace-name my-workspace
with the --registry-name <registry-name>
option.
az ml model list [--archived-only]
[--include-archived]
[--max-results]
[--name]
[--registry-name]
[--resource-group]
[--stage]
[--workspace-name]
Examples
List all the models in a workspace
az ml model list --resource-group my-resource-group --workspace-name my-workspace
List all the model versions for the specified name in a workspace
az ml model list --name my-model --resource-group my-resource-group --workspace-name my-workspace
List all the models in a workspace using --query argument to execute a JMESPath query on the results of commands.
az ml model list --query "[].{Name:name}" --output table --resource-group my-resource-group --workspace-name my-workspace
Optional Parameters
List archived models only.
List archived models and active models.
Max number of results to return.
Name of the model. If provided, all the model versions under this name will be returned.
If provided, the command will target the registry instead of a workspace. Hence resource group and workspace won't be required.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Stage of the model.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml model package
This command is in preview and under development. Reference and support levels: https://aka.ms/CLI_refstatus
Package a model into an environment.
When a model is packaged, an environment with all the dependencies is created.
az ml model package --file
--name
--version
[--registry-name]
[--resource-group]
[--workspace-name]
Examples
Package a model with the specified name and version
az ml model package --name my-model --version my-version --resource-group my-resource-group --workspace-name my-workspace --file my-package.yml
Required Parameters
Local path to the YAML file containing the model package definition.
Name of the model.
Version of the model.
Optional Parameters
If provided, the command will target the registry instead of a workspace. Hence resource group and workspace won't be required.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml model restore
Restore an archived model.
When an archived model is restored, it will no longer be hidden from list queries (az ml model list
). If an entire model container is archived, you can restore that archived container. This will restore all versions of the model under that given name. You cannot restore only a specific model version if the entire model container is archived - you will need to restore the entire container. If only an individual model version was archived, you can restore that specific version.
az ml model restore --name
[--label]
[--registry-name]
[--resource-group]
[--version]
[--workspace-name]
Examples
Restore an archived model container (restores all versions of that model)
az ml model restore --name my-model --resource-group my-resource-group --workspace-name my-workspace
Restore a specific archived model version
az ml model restore --name my-model --version 1 --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of the model.
Optional Parameters
Label of the model.
If provided, the command will target the registry instead of a workspace. Hence resource group and workspace won't be required.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Version of the model.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml model share
Share a specific model from workspace to registry.
Copy an existing model from a workspace to a registry for cross-workspace reuse.
az ml model share --name
--registry-name
--share-with-name
--share-with-version
--version
[--resource-group]
[--workspace-name]
Examples
Share an existing environment from workspace to registry
az ml model share --name my-model --version my-version --resource-group my-resource-group --workspace-name my-workspace --share-with-name new-name-in-registry --share-with-version new-version-in-registry --registry-name my-registry
Required Parameters
Name of the model.
Destination registry.
Name of the model to be created with.
Version of the model to be created with.
Version of the model.
Optional Parameters
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml model show
Show details for a model in a workspace/registry. If you are using a registry, replace --workspace-name my-workspace
with the --registry-name <registry-name>
option.
az ml model show --name
[--label]
[--registry-name]
[--resource-group]
[--version]
[--workspace-name]
Examples
Show details for a model with the specified name and version
az ml model show --name my-model --version 1 --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of the model.
Optional Parameters
Label of the model.
If provided, the command will target the registry instead of a workspace. Hence resource group and workspace won't be required.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Version of the model.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.
az ml model update
Update a model in a workspace/registry.
The 'description', and 'tags' properties can be updated. If you are using a registry, replace --workspace-name my-workspace
with the --registry-name <registry-name>
option.
az ml model update --name
--resource-group
[--add]
[--force-string]
[--label]
[--registry-name]
[--remove]
[--set]
[--stage]
[--version]
[--workspace-name]
Examples
Update a model's flavors
az ml model update --name my-model --version 1 --set flavors.python_function.python_version=3.8 --resource-group my-resource-group --workspace-name my-workspace
Required Parameters
Name of the model.
Name of resource group. You can configure the default group using az configure --defaults group=<name>
.
Optional Parameters
Add an object to a list of objects by specifying a path and key value pairs. Example: --add property.listProperty <key=value, string or JSON string>
.
When using 'set' or 'add', preserve string literals instead of attempting to convert to JSON.
Label of the model.
If provided, the command will target the registry instead of a workspace. Hence resource group and workspace won't be required.
Remove a property or an element from a list. Example: --remove property.list <indexToRemove>
OR --remove propertyToRemove
.
Update an object by specifying a property path and value to set. Example: --set property1.property2=<value>
.
Stage of the model.
Version of the model.
Name of the Azure ML workspace. You can configure the default workspace using az configure --defaults workspace=<name>
.
Global Parameters
Increase logging verbosity to show all debug logs.
Show this help message and exit.
Only show errors, suppressing warnings.
Output format.
JMESPath query string. See http://jmespath.org/ for more information and examples.
Name or ID of subscription. You can configure the default subscription using az account set -s NAME_OR_ID
.
Increase logging verbosity. Use --debug for full debug logs.