Freigeben über


series_fit_lowess_fl()

Gilt für: ✅Microsoft Fabric✅Azure Data Explorer

Die Funktion series_fit_lowess_fl() ist eine benutzerdefinierte Funktion (UDF), die eine LOWESS-Regression auf eine Datenreihe anwendet. Diese Funktion verwendet eine Tabelle mit mehreren Reihen (dynamische numerische Arrays) und generiert eine LOWESS Curve, die eine geglättete Version der ursprünglichen Datenreihe ist.

Voraussetzungen

  • Das Python-Plug-In muss im Cluster aktiviert sein. Dies ist für die inline Python erforderlich, die in der Funktion verwendet wird.
  • Das Python-Plug-In muss in der Datenbank aktiviert sein. Dies ist für die inline Python erforderlich, die in der Funktion verwendet wird.

Syntax

T | invoke series_fit_lowess_fl(, y_series y_fit_series, [ fit_size ] [ x_series ],, [ x_istime ])

Erfahren Sie mehr über Syntaxkonventionen.

Parameter

Name Type Erforderlich Beschreibung
y_series string ✔️ Der Name der Eingabetabellenspalte, die die abhängige Variable enthält. Diese Spalte ist die Datenreihe, die angepasst werden soll.
y_fit_series string ✔️ Der Name der Spalte zum Speichern der einbauten Serie.
fit_size int Für jeden Punkt wird die lokale Regression auf die jeweiligen fit_size nächstgelegenen Punkte angewendet. Der Standard ist 5.
x_series string Der Name der Spalte, die die unabhängige Variable enthält, d. h. die X- oder Zeitachse. Dieser Parameter ist optional und wird nur für uneinheitlich angeordnete Datenreihen benötigt. Der Standardwert ist eine leere Zeichenfolge, da x für die Regression einer gleichmäßigen Leerreihen redundant ist.
x_istime bool Dieser boolesche Parameter wird nur benötigt, wenn x_series angegeben ist und ein Vektor von datetime ist. Der Standardwert ist false.

Funktionsdefinition

Sie können die Funktion definieren, indem Sie den Code entweder als abfragedefinierte Funktion einbetten oder wie folgt als gespeicherte Funktion in Ihrer Datenbank erstellen:

Definieren Sie die Funktion mithilfe der folgenden Let-Anweisung. Es sind keine Berechtigungen erforderlich.

Wichtig

Eine Let-Anweisung kann nicht alleine ausgeführt werden. Auf sie muss eine tabellarische Ausdrucksanweisung folgen. Informationen zum Ausführen eines funktionierenden Beispiels series_fit_lowess_fl()finden Sie unter "Beispiele".

let series_fit_lowess_fl=(tbl:(*), y_series:string, y_fit_series:string, fit_size:int=5, x_series:string='', x_istime:bool=False)
{
    let kwargs = bag_pack('y_series', y_series, 'y_fit_series', y_fit_series, 'fit_size', fit_size, 'x_series', x_series, 'x_istime', x_istime);
    let code = ```if 1:
        y_series = kargs["y_series"]
        y_fit_series = kargs["y_fit_series"]
        fit_size = kargs["fit_size"]
        x_series = kargs["x_series"]
        x_istime = kargs["x_istime"]
        import statsmodels.api as sm
        def lowess_fit(ts_row, x_col, y_col, fsize):
            y = ts_row[y_col]
            fraction = fsize/len(y)
            if x_col == "": # If there is no x column creates sequential range [1, len(y)]
               x = np.arange(len(y)) + 1
            else: # if x column exists check whether its a time column. If so, normalize it to the [1, len(y)] range, else take it as is.
               if x_istime: 
                   x = pd.to_numeric(pd.to_datetime(ts_row[x_col]))
                   x = x - x.min()
                   x = x / x.max()
                   x = x * (len(x) - 1) + 1
               else:
                   x = ts_row[x_col]
            lowess = sm.nonparametric.lowess
            z = lowess(y, x, return_sorted=False, frac=fraction)
            return list(z)
        result = df
        result[y_fit_series] = df.apply(lowess_fit, axis=1, args=(x_series, y_series, fit_size))
    ```;
    tbl
     | evaluate python(typeof(*), code, kwargs)
};
// Write your query to use the function here.

Beispiele

In den folgenden Beispielen wird der Aufrufoperator zum Ausführen der Funktion verwendet.

LOWESS Regression in regelmäßigen Zeitreihen

Um eine abfragedefinierte Funktion zu verwenden, rufen Sie sie nach der definition der eingebetteten Funktion auf.

let series_fit_lowess_fl=(tbl:(*), y_series:string, y_fit_series:string, fit_size:int=5, x_series:string='', x_istime:bool=False)
{
    let kwargs = bag_pack('y_series', y_series, 'y_fit_series', y_fit_series, 'fit_size', fit_size, 'x_series', x_series, 'x_istime', x_istime);
    let code = ```if 1:
        y_series = kargs["y_series"]
        y_fit_series = kargs["y_fit_series"]
        fit_size = kargs["fit_size"]
        x_series = kargs["x_series"]
        x_istime = kargs["x_istime"]
        import statsmodels.api as sm
        def lowess_fit(ts_row, x_col, y_col, fsize):
            y = ts_row[y_col]
            fraction = fsize/len(y)
            if x_col == "": # If there is no x column creates sequential range [1, len(y)]
               x = np.arange(len(y)) + 1
            else: # if x column exists check whether its a time column. If so, normalize it to the [1, len(y)] range, else take it as is.
               if x_istime: 
                   x = pd.to_numeric(pd.to_datetime(ts_row[x_col]))
                   x = x - x.min()
                   x = x / x.max()
                   x = x * (len(x) - 1) + 1
               else:
                   x = ts_row[x_col]
            lowess = sm.nonparametric.lowess
            z = lowess(y, x, return_sorted=False, frac=fraction)
            return list(z)
        result = df
        result[y_fit_series] = df.apply(lowess_fit, axis=1, args=(x_series, y_series, fit_size))
    ```;
    tbl
     | evaluate python(typeof(*), code, kwargs)
};
//
// Apply 9 points LOWESS regression on regular time series
//
let max_t = datetime(2016-09-03);
demo_make_series1
| make-series num=count() on TimeStamp from max_t-1d to max_t step 5m by OsVer
| extend fnum = dynamic(null)
| invoke series_fit_lowess_fl('num', 'fnum', 9)
| render timechart

Output

Diagramm mit neun Punkten, die LOWESS in eine normale Zeitreihe passen.

Unregelmäßige Zeitreihen testen

Um eine abfragedefinierte Funktion zu verwenden, rufen Sie sie nach der definition der eingebetteten Funktion auf.

let series_fit_lowess_fl=(tbl:(*), y_series:string, y_fit_series:string, fit_size:int=5, x_series:string='', x_istime:bool=False)
{
    let kwargs = bag_pack('y_series', y_series, 'y_fit_series', y_fit_series, 'fit_size', fit_size, 'x_series', x_series, 'x_istime', x_istime);
    let code = ```if 1:
        y_series = kargs["y_series"]
        y_fit_series = kargs["y_fit_series"]
        fit_size = kargs["fit_size"]
        x_series = kargs["x_series"]
        x_istime = kargs["x_istime"]
        import statsmodels.api as sm
        def lowess_fit(ts_row, x_col, y_col, fsize):
            y = ts_row[y_col]
            fraction = fsize/len(y)
            if x_col == "": # If there is no x column creates sequential range [1, len(y)]
               x = np.arange(len(y)) + 1
            else: # if x column exists check whether its a time column. If so, normalize it to the [1, len(y)] range, else take it as is.
               if x_istime: 
                   x = pd.to_numeric(pd.to_datetime(ts_row[x_col]))
                   x = x - x.min()
                   x = x / x.max()
                   x = x * (len(x) - 1) + 1
               else:
                   x = ts_row[x_col]
            lowess = sm.nonparametric.lowess
            z = lowess(y, x, return_sorted=False, frac=fraction)
            return list(z)
        result = df
        result[y_fit_series] = df.apply(lowess_fit, axis=1, args=(x_series, y_series, fit_size))
    ```;
    tbl
     | evaluate python(typeof(*), code, kwargs)
};
let max_t = datetime(2016-09-03);
demo_make_series1
| where TimeStamp between ((max_t-1d)..max_t)
| summarize num=count() by bin(TimeStamp, 5m), OsVer
| order by TimeStamp asc
| where hourofday(TimeStamp) % 6 != 0   //  delete every 6th hour to create irregular time series
| summarize TimeStamp=make_list(TimeStamp), num=make_list(num) by OsVer
| extend fnum = dynamic(null)
| invoke series_fit_lowess_fl('num', 'fnum', 9, 'TimeStamp', True)
| render timechart 

Output

Diagramm mit neun Punkten LOWESS passt zu einer unregelmäßigen Zeitreihe.

Vergleichen von LOWESS mit polynomischer Passform

Um eine abfragedefinierte Funktion zu verwenden, rufen Sie sie nach der definition der eingebetteten Funktion auf.

let series_fit_lowess_fl=(tbl:(*), y_series:string, y_fit_series:string, fit_size:int=5, x_series:string='', x_istime:bool=False)
{
    let kwargs = bag_pack('y_series', y_series, 'y_fit_series', y_fit_series, 'fit_size', fit_size, 'x_series', x_series, 'x_istime', x_istime);
    let code = ```if 1:
        y_series = kargs["y_series"]
        y_fit_series = kargs["y_fit_series"]
        fit_size = kargs["fit_size"]
        x_series = kargs["x_series"]
        x_istime = kargs["x_istime"]
        import statsmodels.api as sm
        def lowess_fit(ts_row, x_col, y_col, fsize):
            y = ts_row[y_col]
            fraction = fsize/len(y)
            if x_col == "": # If there is no x column creates sequential range [1, len(y)]
               x = np.arange(len(y)) + 1
            else: # if x column exists check whether its a time column. If so, normalize it to the [1, len(y)] range, else take it as is.
               if x_istime: 
                   x = pd.to_numeric(pd.to_datetime(ts_row[x_col]))
                   x = x - x.min()
                   x = x / x.max()
                   x = x * (len(x) - 1) + 1
               else:
                   x = ts_row[x_col]
            lowess = sm.nonparametric.lowess
            z = lowess(y, x, return_sorted=False, frac=fraction)
            return list(z)
        result = df
        result[y_fit_series] = df.apply(lowess_fit, axis=1, args=(x_series, y_series, fit_size))
    ```;
    tbl
     | evaluate python(typeof(*), code, kwargs)
};
range x from 1 to 200 step 1
| project x = rand()*5 - 2.3
| extend y = pow(x, 5)-8*pow(x, 3)+10*x+6
| extend y = y + (rand() - 0.5)*0.5*y
| summarize x=make_list(x), y=make_list(y)
| extend y_lowess = dynamic(null)
| invoke series_fit_lowess_fl('y', 'y_lowess', 15, 'x')
| extend series_fit_poly(y, x, 5)
| project x, y, y_lowess, y_polynomial=series_fit_poly_y_poly_fit
| render linechart

Output

Graphen von LOWESS vs Polynomial fit for a fifth order polynomial with noise on x & y axes