Sdílet prostřednictvím


FastTreeBinaryTrainer Třída

Definice

Trénování IEstimator<TTransformer> modelu binární klasifikace rozhodovacího stromu pomocí FastTree

public sealed class FastTreeBinaryTrainer : Microsoft.ML.Trainers.FastTree.BoostingFastTreeTrainerBase<Microsoft.ML.Trainers.FastTree.FastTreeBinaryTrainer.Options,Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Calibrators.CalibratedModelParametersBase<Microsoft.ML.Trainers.FastTree.FastTreeBinaryModelParameters,Microsoft.ML.Calibrators.PlattCalibrator>>,Microsoft.ML.Calibrators.CalibratedModelParametersBase<Microsoft.ML.Trainers.FastTree.FastTreeBinaryModelParameters,Microsoft.ML.Calibrators.PlattCalibrator>>
type FastTreeBinaryTrainer = class
    inherit BoostingFastTreeTrainerBase<FastTreeBinaryTrainer.Options, BinaryPredictionTransformer<CalibratedModelParametersBase<FastTreeBinaryModelParameters, PlattCalibrator>>, CalibratedModelParametersBase<FastTreeBinaryModelParameters, PlattCalibrator>>
Public NotInheritable Class FastTreeBinaryTrainer
Inherits BoostingFastTreeTrainerBase(Of FastTreeBinaryTrainer.Options, BinaryPredictionTransformer(Of CalibratedModelParametersBase(Of FastTreeBinaryModelParameters, PlattCalibrator)), CalibratedModelParametersBase(Of FastTreeBinaryModelParameters, PlattCalibrator))
Dědičnost

Poznámky

Chcete-li vytvořit tohoto trenéra, použijte FastTree nebo FastTree(Možnosti).

Vstupní a výstupní sloupce

Vstupní data sloupce popisku musí být Boolean. Vstupními funkcemi musí být data sloupců známého vektoru Singlevelikosti .

Tento trenér vypíše následující sloupce:

Název výstupního sloupce Typ sloupce Description
Score Single Nevázané skóre, které byl vypočítán modelem.
PredictedLabel Boolean Predikovaný popisek na základě znaménka skóre Záporná mapa false skóre a pozitivní skóre mapuje na true.
Probability Single Pravděpodobnost vypočítaná kalibrací skóre hodnoty true jako popisku. Hodnota pravděpodobnosti je v rozsahu [0, 1].

Charakteristiky trenéra

Úloha strojového učení Binární klasifikace
Vyžaduje se normalizace? No
Vyžaduje se ukládání do mezipaměti? No
Povinné nuGet kromě Microsoft.ML Microsoft.ML.FastTree
Exportovatelný do ONNX Yes

Podrobnosti o trénovacím algoritmu

FastTree je efektivní implementace algoritmu pro zvýšení přechodu MART . Zvýšení přechodu je technika strojového učení pro regresní problémy. Vytvoří každý regresní strom v podrobném měřítku pomocí předdefinované funkce ztráty k měření chyby pro každý krok a opraví ho v dalším kroku. Takže tento prediktivní model je ve skutečnosti soubor slabších prediktivních modelů. V regresních problémech vytváří zvýšení řady takových stromů krokově moudrým způsobem a pak vybere optimální strom pomocí libovolné odlišitelné ztrátové funkce.

MART se učí soubor regresních stromů, což je rozhodovací strom se skalárními hodnotami v jeho listech. Rozhodovací strom (nebo regrese) je binární vývojový graf podobný binárnímu stromu, kde se na každém vnitřním uzlu rozhodne, který ze dvou podřízených uzlů bude pokračovat na základě jedné z hodnot funkcí ze vstupu. Na každém uzlu listu se vrátí hodnota. V vnitřních uzlech je rozhodnutí založeno na testu x <= v, kde x je hodnota funkce ve vstupní ukázce a v je jednou z možných hodnot této funkce. Funkce, které lze vytvořit regresním stromem, jsou všechny konstantní funkce pro kusy.

Soubor stromů se vytváří výpočtem, v každém kroku regresní strom, který přibližuje přechod funkce ztráty a přidá ho do předchozího stromu s koeficienty, které minimalizují ztrátu nového stromu. Výstupem souboru vytvořeného MART v dané instanci je součet výstupů stromu.

  • V případě problému s binární klasifikací se výstup převede na pravděpodobnost pomocí určité formy kalibrace.
  • V případě problému regrese je výstup predikovanou hodnotou funkce.
  • V případě problému s řazením jsou instance seřazeny podle výstupní hodnoty souboru.

Další informace najdete tady:

V části Viz také najdete odkazy na příklady použití.

Pole

FeatureColumn

Sloupec funkcí, který trenér očekává.

(Zděděno od TrainerEstimatorBase<TTransformer,TModel>)
GroupIdColumn

Volitelný sloupec groupID, který očekává trenér hodnocení.

(Zděděno od TrainerEstimatorBaseWithGroupId<TTransformer,TModel>)
LabelColumn

Sloupec popisku, který trenér očekává. Může to být null, což označuje, že popisek se nepoužívá pro trénování.

(Zděděno od TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Sloupec hmotnosti, který trenér očekává. Může být null, což značí, že váha se nepoužívá pro trénování.

(Zděděno od TrainerEstimatorBase<TTransformer,TModel>)

Vlastnosti

Info

Trénování IEstimator<TTransformer> modelu binární klasifikace rozhodovacího stromu pomocí FastTree

(Zděděno od FastTreeTrainerBase<TOptions,TTransformer,TModel>)

Metody

Fit(IDataView, IDataView)

FastTreeBinaryTrainer Trénování pomocí trénovacích i ověřovacích dat vrátí BinaryPredictionTransformer<TModel>hodnotu .

Fit(IDataView)

Vlaky a vrátí ITransformerhodnotu .

(Zděděno od TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Trénování IEstimator<TTransformer> modelu binární klasifikace rozhodovacího stromu pomocí FastTree

(Zděděno od TrainerEstimatorBase<TTransformer,TModel>)

Metody rozšíření

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Připojte k řetězci odhadu kontrolní bod ukládání do mezipaměti. Tím zajistíte, aby se podřízené estimátory natrénovaly na data uložená v mezipaměti. Před průchodem více dat je užitečné mít kontrolní bod ukládání do mezipaměti.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Pokud získáte odhadátor, vraťte obtékání objektu, který jednou zavolá delegáta Fit(IDataView) . Často je důležité, aby estimátor vrátil informace o tom, co bylo vhodné, což je důvod, proč Fit(IDataView) metoda vrací konkrétně zadaný objekt, a ne jen obecné ITransformer. Ve stejnou dobu se však často vytvářejí do kanálů s mnoha objekty, takže možná budeme muset vytvořit řetězec odhadovačů prostřednictvím EstimatorChain<TLastTransformer> toho, kde je odhadovač, IEstimator<TTransformer> pro který chceme získat transformátor, uložen někde v tomto řetězu. Pro tento scénář můžeme prostřednictvím této metody připojit delegáta, který bude volána po volání fit.

Platí pro

Viz také