Sdílet prostřednictvím


PcaCatalog.RandomizedPca Metoda

Definice

Přetížení

RandomizedPca(AnomalyDetectionCatalog+AnomalyDetectionTrainers, RandomizedPcaTrainer+Options)

Vytvořte RandomizedPcaTrainer s pokročilými možnostmi, které trénuje přibližný model analýzy hlavních komponent (PCA) pomocí randomizovaného algoritmu rozkladu hodnot s jedinečným číslem (SVD).

RandomizedPca(AnomalyDetectionCatalog+AnomalyDetectionTrainers, String, String, Int32, Int32, Boolean, Nullable<Int32>)

Vytvořte RandomizedPcaTrainer, který trénuje přibližný model analýzy hlavních komponent (PCA) pomocí randomizovaného algoritmu rozkladu hodnoty (SVD).

RandomizedPca(AnomalyDetectionCatalog+AnomalyDetectionTrainers, RandomizedPcaTrainer+Options)

Vytvořte RandomizedPcaTrainer s pokročilými možnostmi, které trénuje přibližný model analýzy hlavních komponent (PCA) pomocí randomizovaného algoritmu rozkladu hodnot s jedinečným číslem (SVD).

public static Microsoft.ML.Trainers.RandomizedPcaTrainer RandomizedPca (this Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers catalog, Microsoft.ML.Trainers.RandomizedPcaTrainer.Options options);
static member RandomizedPca : Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers * Microsoft.ML.Trainers.RandomizedPcaTrainer.Options -> Microsoft.ML.Trainers.RandomizedPcaTrainer
<Extension()>
Public Function RandomizedPca (catalog As AnomalyDetectionCatalog.AnomalyDetectionTrainers, options As RandomizedPcaTrainer.Options) As RandomizedPcaTrainer

Parametry

catalog
AnomalyDetectionCatalog.AnomalyDetectionTrainers

Objekt trenéra katalogu detekce anomálií.

options
RandomizedPcaTrainer.Options

Pokročilé možnosti algoritmu.

Návraty

Příklady

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.AnomalyDetection
{
    public static class RandomizedPcaSampleWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Training data.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 2, 3} },
                new DataPoint(){ Features = new float[3] {0, 2, 4} },
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 2, 2} },
                new DataPoint(){ Features = new float[3] {0, 2, 3} },
                new DataPoint(){ Features = new float[3] {0, 2, 4} },
                new DataPoint(){ Features = new float[3] {1, 0, 0} }
            };

            // Convert the List<DataPoint> to IDataView, a consumable format to
            // ML.NET functions.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            var options = new Microsoft.ML.Trainers.RandomizedPcaTrainer.Options()
            {
                FeatureColumnName = nameof(DataPoint.Features),
                Rank = 1,
                Seed = 10,
            };

            // Create an anomaly detector. Its underlying algorithm is randomized
            // PCA.
            var pipeline = mlContext.AnomalyDetection.Trainers.RandomizedPca(
                options);

            // Train the anomaly detector.
            var model = pipeline.Fit(data);

            // Apply the trained model on the training data.
            var transformed = model.Transform(data);

            // Read ML.NET predictions into IEnumerable<Result>.
            var results = mlContext.Data.CreateEnumerable<Result>(transformed,
                reuseRowObject: false).ToList();

            // Let's go through all predictions.
            for (int i = 0; i < samples.Count; ++i)
            {
                // The i-th example's prediction result.
                var result = results[i];

                // The i-th example's feature vector in text format.
                var featuresInText = string.Join(',', samples[i].Features);

                if (result.PredictedLabel)
                    // The i-th sample is predicted as an outlier.
                    Console.WriteLine("The {0}-th example with features [{1}] is" +
                        "an outlier with a score of being outlier {2}", i,
                        featuresInText, result.Score);
                else
                    // The i-th sample is predicted as an inlier.
                    Console.WriteLine("The {0}-th example with features [{1}] is" +
                        "an inlier with a score of being outlier {2}",
                        i, featuresInText, result.Score);
            }
            // Lines printed out should be
            // The 0 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.2264826
            // The 1 - th example with features[0, 2, 3] is an inlier with a score of being outlier 0.1739471
            // The 2 - th example with features[0, 2, 4] is an inlier with a score of being outlier 0.05711612
            // The 3 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.2264826
            // The 4 - th example with features[0, 2, 2] is an inlier with a score of being outlier 0.3868995
            // The 5 - th example with features[0, 2, 3] is an inlier with a score of being outlier 0.1739471
            // The 6 - th example with features[0, 2, 4] is an inlier with a score of being outlier 0.05711612
            // The 7 - th example with features[1, 0, 0] is an outlier with a score of being outlier 0.6260795
        }

        // Example with 3 feature values. A training data set is a collection of
        // such examples.
        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features { get; set; }
        }

        // Class used to capture prediction of DataPoint.
        private class Result
        {
            // Outlier gets true while inlier has false.
            public bool PredictedLabel { get; set; }
            // Inlier gets smaller score. Score is between 0 and 1.
            public float Score { get; set; }
        }
    }
}

Poznámky

Ve výchozím nastavení je prahová hodnota použitá k určení popisku datového bodu na základě předpokládaného skóre 0,5. Skóre se pohybuje od 0 do 1. Datový bod s předpokládaným skóre vyšším než 0,5 se považuje za odlehlou hodnotu. Slouží ChangeModelThreshold<TModel>(AnomalyPredictionTransformer<TModel>, Single) ke změně této prahové hodnoty.

Platí pro

RandomizedPca(AnomalyDetectionCatalog+AnomalyDetectionTrainers, String, String, Int32, Int32, Boolean, Nullable<Int32>)

Vytvořte RandomizedPcaTrainer, který trénuje přibližný model analýzy hlavních komponent (PCA) pomocí randomizovaného algoritmu rozkladu hodnoty (SVD).

public static Microsoft.ML.Trainers.RandomizedPcaTrainer RandomizedPca (this Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers catalog, string featureColumnName = "Features", string exampleWeightColumnName = default, int rank = 20, int oversampling = 20, bool ensureZeroMean = true, int? seed = default);
static member RandomizedPca : Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers * string * string * int * int * bool * Nullable<int> -> Microsoft.ML.Trainers.RandomizedPcaTrainer
<Extension()>
Public Function RandomizedPca (catalog As AnomalyDetectionCatalog.AnomalyDetectionTrainers, Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional rank As Integer = 20, Optional oversampling As Integer = 20, Optional ensureZeroMean As Boolean = true, Optional seed As Nullable(Of Integer) = Nothing) As RandomizedPcaTrainer

Parametry

catalog
AnomalyDetectionCatalog.AnomalyDetectionTrainers

Objekt trenéra katalogu detekce anomálií.

featureColumnName
String

Název sloupce funkce. Data ve sloupci musí být vektorem známé velikosti Single.

exampleWeightColumnName
String

Název ukázkového sloupce hmotnosti (volitelné). Chcete-li použít sloupec hmotnosti, musí být data sloupce typu Single.

rank
Int32

Počet komponent v PCA.

oversampling
Int32

Parametr převzorkování pro randomizované trénování PCA

ensureZeroMean
Boolean

Pokud je tato možnost povolená, data se zarovnají na střed, aby byla nulová střední hodnota.

seed
Nullable<Int32>

Počáteční hodnota pro generování náhodných čísel.

Návraty

Příklady

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.AnomalyDetection
{
    public static class RandomizedPcaSample
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for except
            // ion tracking and logging, as a catalog of available operations and as
            // the source of randomness. Setting the seed to a fixed number in this
            // example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Training data.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {0, 1, 2} },
                new DataPoint(){ Features = new float[3] {0, 2, 1} },
                new DataPoint(){ Features = new float[3] {2, 0, 0} }
            };

            // Convert the List<DataPoint> to IDataView, a consumable format to
            // ML.NET functions.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Create an anomaly detector. Its underlying algorithm is randomized
            // PCA.
            var pipeline = mlContext.AnomalyDetection.Trainers.RandomizedPca(
                featureColumnName: nameof(DataPoint.Features), rank: 1,
                    ensureZeroMean: false);

            // Train the anomaly detector.
            var model = pipeline.Fit(data);

            // Apply the trained model on the training data.
            var transformed = model.Transform(data);

            // Read ML.NET predictions into IEnumerable<Result>.
            var results = mlContext.Data.CreateEnumerable<Result>(transformed,
                reuseRowObject: false).ToList();

            // Let's go through all predictions.
            for (int i = 0; i < samples.Count; ++i)
            {
                // The i-th example's prediction result.
                var result = results[i];

                // The i-th example's feature vector in text format.
                var featuresInText = string.Join(',', samples[i].Features);

                if (result.PredictedLabel)
                    // The i-th sample is predicted as an outlier.
                    Console.WriteLine("The {0}-th example with features [{1}] is " +
                        "an outlier with a score of being inlier {2}", i,
                            featuresInText, result.Score);
                else
                    // The i-th sample is predicted as an inlier.
                    Console.WriteLine("The {0}-th example with features [{1}] is " +
                        "an inlier with a score of being inlier {2}", i,
                        featuresInText, result.Score);
            }
            // Lines printed out should be
            // The 0 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
            // The 1 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
            // The 2 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
            // The 3 - th example with features[0, 1, 2] is an outlier with a score of being outlier 0.5082728
            // The 4 - th example with features[0, 2, 1] is an inlier with a score of being outlier 0.1101028
            // The 5 - th example with features[2, 0, 0] is an outlier with a score of being outlier 1
        }

        // Example with 3 feature values. A training data set is a collection of
        // such examples.
        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features { get; set; }
        }

        // Class used to capture prediction of DataPoint.
        private class Result
        {
            // Outlier gets true while inlier has false.
            public bool PredictedLabel { get; set; }
            // Inlier gets smaller score. Score is between 0 and 1.
            public float Score { get; set; }
        }
    }
}

Poznámky

Ve výchozím nastavení je prahová hodnota použitá k určení popisku datového bodu na základě předpokládaného skóre 0,5. Skóre se pohybuje od 0 do 1. Datový bod s předpokládaným skóre vyšším než 0,5 se považuje za odlehlou hodnotu. Slouží ChangeModelThreshold<TModel>(AnomalyPredictionTransformer<TModel>, Single) ke změně této prahové hodnoty.

Platí pro