BinaryLoaderSaverCatalog.LoadFromBinary Metoda
Definice
Důležité
Některé informace platí pro předběžně vydaný produkt, který se může zásadně změnit, než ho výrobce nebo autor vydá. Microsoft neposkytuje žádné záruky, výslovné ani předpokládané, týkající se zde uváděných informací.
Přetížení
LoadFromBinary(DataOperationsCatalog, IMultiStreamSource) |
IDataView Načtěte soubor z IMultiStreamSource binárního souboru. Všimněte si, že IDataViewjsou opožděné, takže se tady neděje žádné skutečné načítání, jen ověření schématu. |
LoadFromBinary(DataOperationsCatalog, String) |
IDataView Načtěte soubor z binárního souboru. Všimněte si, že IDataViewjsou opožděné, takže se tady neděje žádné skutečné načítání, jen ověření schématu. |
LoadFromBinary(DataOperationsCatalog, IMultiStreamSource)
IDataView Načtěte soubor z IMultiStreamSource binárního souboru. Všimněte si, že IDataViewjsou opožděné, takže se tady neděje žádné skutečné načítání, jen ověření schématu.
public static Microsoft.ML.IDataView LoadFromBinary (this Microsoft.ML.DataOperationsCatalog catalog, Microsoft.ML.Data.IMultiStreamSource fileSource);
static member LoadFromBinary : Microsoft.ML.DataOperationsCatalog * Microsoft.ML.Data.IMultiStreamSource -> Microsoft.ML.IDataView
<Extension()>
Public Function LoadFromBinary (catalog As DataOperationsCatalog, fileSource As IMultiStreamSource) As IDataView
Parametry
- catalog
- DataOperationsCatalog
Katalog.
- fileSource
- IMultiStreamSource
Zdroj souboru, ze který se má načíst. Může to být například příklad MultiFileSource.
Návraty
Platí pro
LoadFromBinary(DataOperationsCatalog, String)
public static Microsoft.ML.IDataView LoadFromBinary (this Microsoft.ML.DataOperationsCatalog catalog, string path);
static member LoadFromBinary : Microsoft.ML.DataOperationsCatalog * string -> Microsoft.ML.IDataView
<Extension()>
Public Function LoadFromBinary (catalog As DataOperationsCatalog, path As String) As IDataView
Parametry
- catalog
- DataOperationsCatalog
Katalog.
- path
- String
Cesta k souboru, ze které se má načíst.
Návraty
Příklady
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class SaveAndLoadFromBinary
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = new List<DataPoint>()
{
new DataPoint(){ Label = 0, Features = 4},
new DataPoint(){ Label = 0, Features = 5},
new DataPoint(){ Label = 0, Features = 6},
new DataPoint(){ Label = 1, Features = 8},
new DataPoint(){ Label = 1, Features = 9},
};
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
IDataView data = mlContext.Data.LoadFromEnumerable(dataPoints);
// Create a FileStream object and write the IDataView to it as a binary
// IDV file.
using (FileStream stream = new FileStream("data.idv", FileMode.Create))
mlContext.Data.SaveAsBinary(data, stream);
// Create an IDataView object by loading the binary IDV file.
IDataView loadedData = mlContext.Data.LoadFromBinary("data.idv");
// Inspect the data that is loaded from the previously saved binary file
var loadedDataEnumerable = mlContext.Data
.CreateEnumerable<DataPoint>(loadedData, reuseRowObject: false);
foreach (DataPoint row in loadedDataEnumerable)
Console.WriteLine($"{row.Label}, {row.Features}");
// Preview of the loaded data.
// 0, 4
// 0, 5
// 0, 6
// 1, 8
// 1, 9
}
// Example with label and feature values. A data set is a collection of such
// examples.
private class DataPoint
{
public float Label { get; set; }
public float Features { get; set; }
}
}
}