Exportér služby Azure Monitor neobsahuje žádné knihovny instrumentace.
Pomocí následující ukázky kódu můžete shromažďovat závislosti ze sad SDK Azure a ručně se přihlásit k odběru zdroje.
// Create an OpenTelemetry tracer provider builder.
// It is important to keep the TracerProvider instance active throughout the process lifetime.
using var tracerProvider = Sdk.CreateTracerProviderBuilder()
// The following line subscribes to dependencies emitted from Azure SDKs
.AddSource("Azure.*")
.AddAzureMonitorTraceExporter()
.AddHttpClientInstrumentation(o => o.FilterHttpRequestMessage = (_) =>
{
// Azure SDKs create their own client span before calling the service using HttpClient
// In this case, we would see two spans corresponding to the same operation
// 1) created by Azure SDK 2) created by HttpClient
// To prevent this duplication we are filtering the span from HttpClient
// as span from Azure SDK contains all relevant information needed.
var parentActivity = Activity.Current?.Parent;
if (parentActivity != null && parentActivity.Source.Name.Equals("Azure.Core.Http"))
{
return false;
}
return true;
})
.Build();
Žádosti
Uživatelé JMS
Příjemci Kafka
Netty
Křemen
RabbitMQ
Servlety
Plánování pružiny
Poznámka:
Servlet a autoinstrumentace Netty pokrývají většinu služeb JAVA HTTP, včetně Javy EE, Jakarta EE, Spring Boot, Quarkus a Micronaut.
Závislosti (plus šíření distribuovaného trasování podřízené)
Apache HttpClient
Apache HttpAsyncClient
AsyncHttpClient
Google HttpClient
gRPC
java.net.HttpURLConnection
Java 11 HttpClient
Klient JAX-RS
Jetty HttpClient
JMS
Kafka
Klient Netty
OkHttp
RabbitMQ
Závislosti (bez šíření distribuovaného trasování podřízené)
Cassandra
JDBC
MongoDB (asynchronní a synchronizace)
Redis (Salát a Jedis)
Metriky
Metriky mikrometrů, včetně metrik poháněcího zařízení Spring Boot
Metriky JMX
Protokoly
Zpětný protokol (včetně vlastností MDC) ¹ ³
Log4j (včetně vlastností kontextu MDC/vlákna) ¹ ³
Protokolování JBoss (včetně vlastností MDC) ¹ ³
java.util.logging ¹ ³
Výchozí kolekce
Telemetrie generovaná následujícími sadami Azure SDK se ve výchozím nastavení automaticky shromažďuje:
Informace o nativních aplikacích Quartz najdete v dokumentaci k Quarkus.
Následující knihovny instrumentace OpenTelemetry jsou součástí distro služby Azure Monitor Application Insights. Další informace najdete v tématu Sada Azure SDK pro JavaScript.
Příklady použití knihovny protokolování Pythonu najdete na GitHubu.
Telemetrie generovaná službou Azure SDKS se automaticky shromažďuje ve výchozím nastavení.
Poznámka pod čarou
¹: Podporuje automatické hlášení neošetřených nebo nezachycených výjimek.
²: Podporuje metriky OpenTelemetry
³: Ve výchozím nastavení se protokolování shromažďuje pouze na úrovni INFO nebo vyšší. Pokud chcete toto nastavení změnit, podívejte se na možnosti konfigurace.
⁴: Ve výchozím nastavení se protokolování shromažďuje pouze v případě, že se protokolování provádí na úrovni UPOZORNĚNÍ nebo vyšší.
Poznámka:
Distribuce OpenTelemetry služby Azure Monitor zahrnují vlastní mapování a logiku pro automatické generování standardních metrik Application Insights.
Tip
Všechny metriky OpenTelemetry, ať už se automaticky shromažďují z knihoven instrumentace nebo ručně shromažďované z vlastního kódování, se v současné době považují za vlastní metriky Application Insights pro účely fakturace. Další informace.
Přidání knihovny instrumentace komunity
Pokud zahrnete knihovny instrumentace z komunity OpenTelemetry, můžete automaticky shromažďovat další data.
Upozornění
Nepodporujeme ani nezaručujeme kvalitu komunitních instrumentačních knihoven. Pokud ho chcete navrhnout pro naši distribuci, publikujte nebo hlasujte v naší komunitě pro zpětnou vazbu. Mějte na paměti, že některé jsou založené na experimentálních specifikacích OpenTelemetry a můžou představovat budoucí zásadní změny.
Pokud chcete přidat knihovnu komunity ConfigureOpenTelemetryMeterProvider , po přidání balíčku NuGet pro knihovnu použijte tyto metody ConfigureOpenTelemetryTracerProvider .
Následující příklad ukazuje, jak lze instrumentaci modulu runtime přidat ke shromažďování dalších metrik:
// Create a new ASP.NET Core web application builder.
var builder = WebApplication.CreateBuilder(args);
// Configure the OpenTelemetry meter provider to add runtime instrumentation.
builder.Services.ConfigureOpenTelemetryMeterProvider((sp, builder) => builder.AddRuntimeInstrumentation());
// Add the Azure Monitor telemetry service to the application.
// This service will collect and send telemetry data to Azure Monitor.
builder.Services.AddOpenTelemetry().UseAzureMonitor();
// Build the ASP.NET Core web application.
var app = builder.Build();
// Start the ASP.NET Core web application.
app.Run();
Následující příklad ukazuje, jak lze instrumentaci modulu runtime přidat ke shromažďování dalších metrik:
// Create a new OpenTelemetry meter provider and add runtime instrumentation and the Azure Monitor metric exporter.
// It is important to keep the MetricsProvider instance active throughout the process lifetime.
var metricsProvider = Sdk.CreateMeterProviderBuilder()
.AddRuntimeInstrumentation()
.AddAzureMonitorMetricExporter();
Distribuci Javy nemůžete rozšířit o komunitní instrumentační knihovny. Pokud chcete požádat, abychom zahrnuli jinou knihovnu instrumentace, otevřete problém na naší stránce GitHubu. Odkaz na naši stránku GitHubu najdete v dalších krocích.
Knihovny instrumentace komunity nemůžete používat s nativními aplikacemi GraalVM v Javě.
Další instrumentace OpenTelemetry jsou k dispozici tady a je možné je přidat pomocí TraceHandler v ApplicationInsightsClient:
// Import the Azure Monitor OpenTelemetry plugin and OpenTelemetry API
const { useAzureMonitor } = require("@azure/monitor-opentelemetry");
const { metrics, trace, ProxyTracerProvider } = require("@opentelemetry/api");
// Import the OpenTelemetry instrumentation registration function and Express instrumentation
const { registerInstrumentations } = require( "@opentelemetry/instrumentation");
const { ExpressInstrumentation } = require('@opentelemetry/instrumentation-express');
// Get the OpenTelemetry tracer provider and meter provider
const tracerProvider = (trace.getTracerProvider() as ProxyTracerProvider).getDelegate();
const meterProvider = metrics.getMeterProvider();
// Enable Azure Monitor integration
useAzureMonitor();
// Register the Express instrumentation
registerInstrumentations({
// List of instrumentations to register
instrumentations: [
new ExpressInstrumentation(), // Express instrumentation
],
// OpenTelemetry tracer provider
tracerProvider: tracerProvider,
// OpenTelemetry meter provider
meterProvider: meterProvider
});
Pokud chcete přidat komunitní instrumentační knihovnu (není oficiálně podporovaná nebo zahrnutá v distribucích služby Azure Monitor), můžete instrumentovat přímo s instrumentacemi. Seznam knihoven instrumentace komunity najdete tady.
Poznámka:
Instrumentace podporované knihovny instrumentace ručně s instrument() použitím distrou configure_azure_monitor() se nedoporučuje. Nejedná se o podporovaný scénář a u telemetrie se může zobrazit nežádoucí chování.
# Import the `configure_azure_monitor()`, `SQLAlchemyInstrumentor`, `create_engine`, and `text` functions from the appropriate packages.
from azure.monitor.opentelemetry import configure_azure_monitor
from opentelemetry.instrumentation.sqlalchemy import SQLAlchemyInstrumentor
from sqlalchemy import create_engine, text
# Configure OpenTelemetry to use Azure Monitor.
configure_azure_monitor()
# Create a SQLAlchemy engine.
engine = create_engine("sqlite:///:memory:")
# SQLAlchemy instrumentation is not officially supported by this package, however, you can use the OpenTelemetry `instrument()` method manually in conjunction with `configure_azure_monitor()`.
SQLAlchemyInstrumentor().instrument(
engine=engine,
)
# Database calls using the SQLAlchemy library will be automatically captured.
with engine.connect() as conn:
result = conn.execute(text("select 'hello world'"))
print(result.all())
Shromažďování vlastních telemetrických dat
Tato část vysvětluje, jak shromažďovat vlastní telemetrická data z vaší aplikace.
V závislosti na vašem jazyce a typu signálu existují různé způsoby shromažďování vlastních telemetrických dat, mezi které patří:
OpenTelemetry API
Knihovny protokolování/metrik pro konkrétní jazyk
Klasické rozhraní API Application Insights
Následující tabulka představuje aktuálně podporované vlastní typy telemetrie:
Jazyk
Vlastní události
Vlastní metriky
Závislosti
Výjimky
Zobrazení stránek
Žádosti
Trasování
ASP.NET Core
OpenTelemetry API
Ano
Ano
Ano
Yes
ILogger Rozhraní api
Ano
Klasické rozhraní API AI
Java
OpenTelemetry API
Ano
Ano
Ano
Yes
Logback, Log4j, JUL
Ano
Yes
Metriky v mikrometrech
Ano
Klasické rozhraní API AI
Ano
Ano
Ano
Ano
Ano
Ano
Yes
Node.js
OpenTelemetry API
Ano
Ano
Ano
Yes
Python
OpenTelemetry API
Ano
Ano
Ano
Yes
Modul protokolování Pythonu
Ano
Rozšíření událostí
Ano
Ano
Poznámka:
Application Insights Java 3.x naslouchá telemetrii odesílané do klasického rozhraní API Application Insights. Podobně Application Insights Node.js 3.x shromažďuje události vytvořené pomocí klasického rozhraní API Application Insights. Díky tomu je upgrade jednodušší a vyplní mezeru v naší podpoře vlastní telemetrie, dokud nebudou podporovány všechny vlastní typy telemetrie prostřednictvím rozhraní API OpenTelemetry.
Přidání vlastních metrik
V tomto kontextu termín vlastních metrik odkazuje na ruční instrumentaci kódu, aby shromáždil další metriky nad rámec toho, co knihovny Instrumentace OpenTelemetry automaticky shromažďují.
Rozhraní Api OpenTelemetry nabízí šest "nástrojů" pro pokrytí různých scénářů metrik a při vizualizaci metrik v Průzkumníku metrik musíte vybrat správný typ agregace. Tento požadavek platí při použití rozhraní API metriky OpenTelemetry k odesílání metrik a při použití knihovny instrumentace.
Následující tabulka uvádí doporučené typy agregace pro jednotlivé nástroje metriky OpenTelemetry.
OpenTelemetry Instrument
Typ agregace služby Azure Monitor
Čítač
Sum
Asynchronní čítač
Sum
Histogram
Min, Max, Average, Sum a Count
Asynchronní měřidlo
Průměr
UpDownCounter
Sum
Asynchronní upDownCounter
Sum
Upozornění
Typy agregace nad rámec toho, co je znázorněno v tabulce, obvykle nejsou smysluplné.
Specifikace OpenTelemetry popisuje nástroje a poskytuje příklady, kdy je možné jednotlivé nástroje použít.
Tip
Histogram je nejuniverzálnější a nejpodřenější ekvivalent rozhraní API GetMetric GetMetric. Azure Monitor v současné době zploštěná instrument histogramu do pěti podporovaných typů agregace a podpora percentilů probíhá. I když méně všestranné, jiné nástroje OpenTelemetry mají menší dopad na výkon vaší aplikace.
Spuštění aplikace se musí přihlásit k odběru měřiče podle názvu:
// Create a new ASP.NET Core web application builder.
var builder = WebApplication.CreateBuilder(args);
// Configure the OpenTelemetry meter provider to add a meter named "OTel.AzureMonitor.Demo".
builder.Services.ConfigureOpenTelemetryMeterProvider((sp, builder) => builder.AddMeter("OTel.AzureMonitor.Demo"));
// Add the Azure Monitor telemetry service to the application.
// This service will collect and send telemetry data to Azure Monitor.
builder.Services.AddOpenTelemetry().UseAzureMonitor();
// Build the ASP.NET Core web application.
var app = builder.Build();
// Start the ASP.NET Core web application.
app.Run();
Musí Meter být inicializován pomocí stejného názvu:
// Create a new meter named "OTel.AzureMonitor.Demo".
var meter = new Meter("OTel.AzureMonitor.Demo");
// Create a new histogram metric named "FruitSalePrice".
Histogram<long> myFruitSalePrice = meter.CreateHistogram<long>("FruitSalePrice");
// Create a new Random object.
var rand = new Random();
// Record a few random sale prices for apples and lemons, with different colors.
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "apple"), new("color", "red"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "lemon"), new("color", "yellow"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "lemon"), new("color", "yellow"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "apple"), new("color", "green"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "apple"), new("color", "red"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "lemon"), new("color", "yellow"));
public class Program
{
// Create a static readonly Meter object named "OTel.AzureMonitor.Demo".
// This meter will be used to track metrics about the application.
private static readonly Meter meter = new("OTel.AzureMonitor.Demo");
public static void Main()
{
// Create a new MeterProvider object using the OpenTelemetry SDK.
// The MeterProvider object is responsible for managing meters and sending
// metric data to exporters.
// It is important to keep the MetricsProvider instance active
// throughout the process lifetime.
//
// The MeterProviderBuilder is configured to add a meter named
// "OTel.AzureMonitor.Demo" and an Azure Monitor metric exporter.
using var meterProvider = Sdk.CreateMeterProviderBuilder()
.AddMeter("OTel.AzureMonitor.Demo")
.AddAzureMonitorMetricExporter()
.Build();
// Create a new Histogram metric named "FruitSalePrice".
// This metric will track the distribution of fruit sale prices.
Histogram<long> myFruitSalePrice = meter.CreateHistogram<long>("FruitSalePrice");
// Create a new Random object. This object will be used to generate random sale prices.
var rand = new Random();
// Record a few random sale prices for apples and lemons, with different colors.
// Each record includes a timestamp, a value, and a set of attributes.
// The attributes can be used to filter and analyze the metric data.
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "apple"), new("color", "red"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "lemon"), new("color", "yellow"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "lemon"), new("color", "yellow"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "apple"), new("color", "green"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "apple"), new("color", "red"));
myFruitSalePrice.Record(rand.Next(1, 1000), new("name", "lemon"), new("color", "yellow"));
// Display a message to the user and wait for them to press Enter.
// This allows the user to see the message and the console before the
// application exits.
System.Console.WriteLine("Press Enter key to exit.");
System.Console.ReadLine();
}
}
import io.opentelemetry.api.GlobalOpenTelemetry;
import io.opentelemetry.api.metrics.DoubleHistogram;
import io.opentelemetry.api.metrics.Meter;
public class Program {
public static void main(String[] args) {
Meter meter = GlobalOpenTelemetry.getMeter("OTEL.AzureMonitor.Demo");
DoubleHistogram histogram = meter.histogramBuilder("histogram").build();
histogram.record(1.0);
histogram.record(100.0);
histogram.record(30.0);
}
}
import io.opentelemetry.api.metrics.DoubleHistogram;
import io.opentelemetry.api.metrics.Meter;
Meter meter = openTelemetry.getMeter("OTEL.AzureMonitor.Demo");
DoubleHistogram histogram = meter.histogramBuilder("histogram").build();
histogram.record(1.0);
histogram.record(100.0);
histogram.record(30.0);
// Import the Azure Monitor OpenTelemetry plugin and OpenTelemetry API
const { useAzureMonitor } = require("@azure/monitor-opentelemetry");
const { metrics } = require("@opentelemetry/api");
// Enable Azure Monitor integration
useAzureMonitor();
// Get the meter for the "testMeter" namespace
const meter = metrics.getMeter("testMeter");
// Create a histogram metric
let histogram = meter.createHistogram("histogram");
// Record values to the histogram metric with different tags
histogram.record(1, { "testKey": "testValue" });
histogram.record(30, { "testKey": "testValue2" });
histogram.record(100, { "testKey2": "testValue" });
# Import the `configure_azure_monitor()` and `metrics` functions from the appropriate packages.
from azure.monitor.opentelemetry import configure_azure_monitor
from opentelemetry import metrics
import os
# Configure OpenTelemetry to use Azure Monitor with the specified connection string.
# Replace `<your-connection-string>` with the connection string to your Azure Monitor Application Insights resource.
configure_azure_monitor(
connection_string="<your-connection-string>",
)
# Opt in to allow grouping of your metrics via a custom metrics namespace in app insights metrics explorer.
# Specify the namespace name using get_meter("namespace-name")
os.environ["APPLICATIONINSIGHTS_METRIC_NAMESPACE_OPT_IN"] = "true"
# Get a meter provider and a meter with the name "otel_azure_monitor_histogram_demo".
meter = metrics.get_meter_provider().get_meter("otel_azure_monitor_histogram_demo")
# Record three values to the histogram.
histogram = meter.create_histogram("histogram")
histogram.record(1.0, {"test_key": "test_value"})
histogram.record(100.0, {"test_key2": "test_value"})
histogram.record(30.0, {"test_key": "test_value2"})
# Wait for background execution.
input()
Spuštění aplikace se musí přihlásit k odběru měřiče podle názvu:
// Create a new ASP.NET Core web application builder.
var builder = WebApplication.CreateBuilder(args);
// Configure the OpenTelemetry meter provider to add a meter named "OTel.AzureMonitor.Demo".
builder.Services.ConfigureOpenTelemetryMeterProvider((sp, builder) => builder.AddMeter("OTel.AzureMonitor.Demo"));
// Add the Azure Monitor telemetry service to the application.
// This service will collect and send telemetry data to Azure Monitor.
builder.Services.AddOpenTelemetry().UseAzureMonitor();
// Build the ASP.NET Core web application.
var app = builder.Build();
// Start the ASP.NET Core web application.
app.Run();
Musí Meter být inicializován pomocí stejného názvu:
// Create a new meter named "OTel.AzureMonitor.Demo".
var meter = new Meter("OTel.AzureMonitor.Demo");
// Create a new counter metric named "MyFruitCounter".
Counter<long> myFruitCounter = meter.CreateCounter<long>("MyFruitCounter");
// Record the number of fruits sold, grouped by name and color.
myFruitCounter.Add(1, new("name", "apple"), new("color", "red"));
myFruitCounter.Add(2, new("name", "lemon"), new("color", "yellow"));
myFruitCounter.Add(1, new("name", "lemon"), new("color", "yellow"));
myFruitCounter.Add(2, new("name", "apple"), new("color", "green"));
myFruitCounter.Add(5, new("name", "apple"), new("color", "red"));
myFruitCounter.Add(4, new("name", "lemon"), new("color", "yellow"));
public class Program
{
// Create a static readonly Meter object named "OTel.AzureMonitor.Demo".
// This meter will be used to track metrics about the application.
private static readonly Meter meter = new("OTel.AzureMonitor.Demo");
public static void Main()
{
// Create a new MeterProvider object using the OpenTelemetry SDK.
// The MeterProvider object is responsible for managing meters and sending
// metric data to exporters.
// It is important to keep the MetricsProvider instance active
// throughout the process lifetime.
//
// The MeterProviderBuilder is configured to add a meter named
// "OTel.AzureMonitor.Demo" and an Azure Monitor metric exporter.
using var meterProvider = Sdk.CreateMeterProviderBuilder()
.AddMeter("OTel.AzureMonitor.Demo")
.AddAzureMonitorMetricExporter()
.Build();
// Create a new counter metric named "MyFruitCounter".
// This metric will track the number of fruits sold.
Counter<long> myFruitCounter = meter.CreateCounter<long>("MyFruitCounter");
// Record the number of fruits sold, grouped by name and color.
myFruitCounter.Add(1, new("name", "apple"), new("color", "red"));
myFruitCounter.Add(2, new("name", "lemon"), new("color", "yellow"));
myFruitCounter.Add(1, new("name", "lemon"), new("color", "yellow"));
myFruitCounter.Add(2, new("name", "apple"), new("color", "green"));
myFruitCounter.Add(5, new("name", "apple"), new("color", "red"));
myFruitCounter.Add(4, new("name", "lemon"), new("color", "yellow"));
// Display a message to the user and wait for them to press Enter.
// This allows the user to see the message and the console before the
// application exits.
System.Console.WriteLine("Press Enter key to exit.");
System.Console.ReadLine();
}
}
import io.opentelemetry.api.GlobalOpenTelemetry;
import io.opentelemetry.api.common.AttributeKey;
import io.opentelemetry.api.common.Attributes;
import io.opentelemetry.api.metrics.LongCounter;
import io.opentelemetry.api.metrics.Meter;
public class Program {
public static void main(String[] args) {
Meter meter = GlobalOpenTelemetry.getMeter("OTEL.AzureMonitor.Demo");
LongCounter myFruitCounter = meter
.counterBuilder("MyFruitCounter")
.build();
myFruitCounter.add(1, Attributes.of(AttributeKey.stringKey("name"), "apple", AttributeKey.stringKey("color"), "red"));
myFruitCounter.add(2, Attributes.of(AttributeKey.stringKey("name"), "lemon", AttributeKey.stringKey("color"), "yellow"));
myFruitCounter.add(1, Attributes.of(AttributeKey.stringKey("name"), "lemon", AttributeKey.stringKey("color"), "yellow"));
myFruitCounter.add(2, Attributes.of(AttributeKey.stringKey("name"), "apple", AttributeKey.stringKey("color"), "green"));
myFruitCounter.add(5, Attributes.of(AttributeKey.stringKey("name"), "apple", AttributeKey.stringKey("color"), "red"));
myFruitCounter.add(4, Attributes.of(AttributeKey.stringKey("name"), "lemon", AttributeKey.stringKey("color"), "yellow"));
}
}
// Import the Azure Monitor OpenTelemetry plugin and OpenTelemetry API
const { useAzureMonitor } = require("@azure/monitor-opentelemetry");
const { metrics } = require("@opentelemetry/api");
// Enable Azure Monitor integration
useAzureMonitor();
// Get the meter for the "testMeter" namespace
const meter = metrics.getMeter("testMeter");
// Create a counter metric
let counter = meter.createCounter("counter");
// Add values to the counter metric with different tags
counter.add(1, { "testKey": "testValue" });
counter.add(5, { "testKey2": "testValue" });
counter.add(3, { "testKey": "testValue2" });
# Import the `configure_azure_monitor()` and `metrics` functions from the appropriate packages.
from azure.monitor.opentelemetry import configure_azure_monitor
from opentelemetry import metrics
import os
# Configure OpenTelemetry to use Azure Monitor with the specified connection string.
# Replace `<your-connection-string>` with the connection string to your Azure Monitor Application Insights resource.
configure_azure_monitor(
connection_string="<your-connection-string>",
)
# Opt in to allow grouping of your metrics via a custom metrics namespace in app insights metrics explorer.
# Specify the namespace name using get_meter("namespace-name")
os.environ["APPLICATIONINSIGHTS_METRIC_NAMESPACE_OPT_IN"] = "true"
# Get a meter provider and a meter with the name "otel_azure_monitor_counter_demo".
meter = metrics.get_meter_provider().get_meter("otel_azure_monitor_counter_demo")
# Create a counter metric with the name "counter".
counter = meter.create_counter("counter")
# Add three values to the counter.
# The first argument to the `add()` method is the value to add.
# The second argument is a dictionary of dimensions.
# Dimensions are used to group related metrics together.
counter.add(1.0, {"test_key": "test_value"})
counter.add(5.0, {"test_key2": "test_value"})
counter.add(3.0, {"test_key": "test_value2"})
# Wait for background execution.
input()
Spuštění aplikace se musí přihlásit k odběru měřiče podle názvu:
// Create a new ASP.NET Core web application builder.
var builder = WebApplication.CreateBuilder(args);
// Configure the OpenTelemetry meter provider to add a meter named "OTel.AzureMonitor.Demo".
builder.Services.ConfigureOpenTelemetryMeterProvider((sp, builder) => builder.AddMeter("OTel.AzureMonitor.Demo"));
// Add the Azure Monitor telemetry service to the application.
// This service will collect and send telemetry data to Azure Monitor.
builder.Services.AddOpenTelemetry().UseAzureMonitor();
// Build the ASP.NET Core web application.
var app = builder.Build();
// Start the ASP.NET Core web application.
app.Run();
Musí Meter být inicializován pomocí stejného názvu:
// Get the current process.
var process = Process.GetCurrentProcess();
// Create a new meter named "OTel.AzureMonitor.Demo".
var meter = new Meter("OTel.AzureMonitor.Demo");
// Create a new observable gauge metric named "Thread.State".
// This metric will track the state of each thread in the current process.
ObservableGauge<int> myObservableGauge = meter.CreateObservableGauge("Thread.State", () => GetThreadState(process));
private static IEnumerable<Measurement<int>> GetThreadState(Process process)
{
// Iterate over all threads in the current process.
foreach (ProcessThread thread in process.Threads)
{
// Create a measurement for each thread, including the thread state, process ID, and thread ID.
yield return new((int)thread.ThreadState, new("ProcessId", process.Id), new("ThreadId", thread.Id));
}
}
public class Program
{
// Create a static readonly Meter object named "OTel.AzureMonitor.Demo".
// This meter will be used to track metrics about the application.
private static readonly Meter meter = new("OTel.AzureMonitor.Demo");
public static void Main()
{
// Create a new MeterProvider object using the OpenTelemetry SDK.
// The MeterProvider object is responsible for managing meters and sending
// metric data to exporters.
// It is important to keep the MetricsProvider instance active
// throughout the process lifetime.
//
// The MeterProviderBuilder is configured to add a meter named
// "OTel.AzureMonitor.Demo" and an Azure Monitor metric exporter.
using var meterProvider = Sdk.CreateMeterProviderBuilder()
.AddMeter("OTel.AzureMonitor.Demo")
.AddAzureMonitorMetricExporter()
.Build();
// Get the current process.
var process = Process.GetCurrentProcess();
// Create a new observable gauge metric named "Thread.State".
// This metric will track the state of each thread in the current process.
ObservableGauge<int> myObservableGauge = meter.CreateObservableGauge("Thread.State", () => GetThreadState(process));
// Display a message to the user and wait for them to press Enter.
// This allows the user to see the message and the console before the
// application exits.
System.Console.WriteLine("Press Enter key to exit.");
System.Console.ReadLine();
}
private static IEnumerable<Measurement<int>> GetThreadState(Process process)
{
// Iterate over all threads in the current process.
foreach (ProcessThread thread in process.Threads)
{
// Create a measurement for each thread, including the thread state, process ID, and thread ID.
yield return new((int)thread.ThreadState, new("ProcessId", process.Id), new("ThreadId", thread.Id));
}
}
}
import io.opentelemetry.api.GlobalOpenTelemetry;
import io.opentelemetry.api.common.AttributeKey;
import io.opentelemetry.api.common.Attributes;
import io.opentelemetry.api.metrics.Meter;
public class Program {
public static void main(String[] args) {
Meter meter = GlobalOpenTelemetry.getMeter("OTEL.AzureMonitor.Demo");
meter.gaugeBuilder("gauge")
.buildWithCallback(
observableMeasurement -> {
double randomNumber = Math.floor(Math.random() * 100);
observableMeasurement.record(randomNumber, Attributes.of(AttributeKey.stringKey("testKey"), "testValue"));
});
}
}
// Import the useAzureMonitor function and the metrics module from the @azure/monitor-opentelemetry and @opentelemetry/api packages, respectively.
const { useAzureMonitor } = require("@azure/monitor-opentelemetry");
const { metrics } = require("@opentelemetry/api");
// Enable Azure Monitor integration.
useAzureMonitor();
// Get the meter for the "testMeter" meter name.
const meter = metrics.getMeter("testMeter");
// Create an observable gauge metric with the name "gauge".
let gauge = meter.createObservableGauge("gauge");
// Add a callback to the gauge metric. The callback will be invoked periodically to generate a new value for the gauge metric.
gauge.addCallback((observableResult: ObservableResult) => {
// Generate a random number between 0 and 99.
let randomNumber = Math.floor(Math.random() * 100);
// Set the value of the gauge metric to the random number.
observableResult.observe(randomNumber, {"testKey": "testValue"});
});
# Import the necessary packages.
from typing import Iterable
import os
from azure.monitor.opentelemetry import configure_azure_monitor
from opentelemetry import metrics
from opentelemetry.metrics import CallbackOptions, Observation
# Configure OpenTelemetry to use Azure Monitor with the specified connection string.
# Replace `<your-connection-string>` with the connection string to your Azure Monitor Application Insights resource.
configure_azure_monitor(
connection_string="<your-connection-string>",
)
# Opt in to allow grouping of your metrics via a custom metrics namespace in app insights metrics explorer.
# Specify the namespace name using get_meter("namespace-name")
os.environ["APPLICATIONINSIGHTS_METRIC_NAMESPACE_OPT_IN"] = "true"
# Get a meter provider and a meter with the name "otel_azure_monitor_gauge_demo".
meter = metrics.get_meter_provider().get_meter("otel_azure_monitor_gauge_demo")
# Define two observable gauge generators.
# The first generator yields a single observation with the value 9.
# The second generator yields a sequence of 10 observations with the value 9 and a different dimension value for each observation.
def observable_gauge_generator(options: CallbackOptions) -> Iterable[Observation]:
yield Observation(9, {"test_key": "test_value"})
def observable_gauge_sequence(options: CallbackOptions) -> Iterable[Observation]:
observations = []
for i in range(10):
observations.append(
Observation(9, {"test_key": i})
)
return observations
# Create two observable gauges using the defined generators.
gauge = meter.create_observable_gauge("gauge", [observable_gauge_generator])
gauge2 = meter.create_observable_gauge("gauge2", [observable_gauge_sequence])
# Wait for background execution.
input()
Přidání vlastních výjimek
Výběr knihoven instrumentace automaticky hlásí výjimky do Application Insights.
Můžete ale chtít ručně hlásit výjimky nad rámec sestavy knihoven instrumentace.
Například výjimky zachycené vaším kódem nejsou obvykle hlášeny. Můžete je chtít nahlásit, aby upoutat pozornost v relevantních prostředích, včetně části selhání a zobrazení komplexních transakcí.
// Start a new activity named "ExceptionExample".
using (var activity = activitySource.StartActivity("ExceptionExample"))
{
// Try to execute some code.
try
{
throw new Exception("Test exception");
}
// If an exception is thrown, catch it and set the activity status to "Error".
catch (Exception ex)
{
activity?.SetStatus(ActivityStatusCode.Error);
activity?.RecordException(ex);
}
}
Protokolování výjimky pomocí ILogger:
// Create a logger using the logger factory. The logger category name is used to filter and route log messages.
var logger = loggerFactory.CreateLogger(logCategoryName);
// Try to execute some code.
try
{
throw new Exception("Test Exception");
}
catch (Exception ex)
{
// Log an error message with the exception. The log level is set to "Error" and the event ID is set to 0.
// The log message includes a template and a parameter. The template will be replaced with the value of the parameter when the log message is written.
logger.Log(
logLevel: LogLevel.Error,
eventId: 0,
exception: ex,
message: "Hello {name}.",
args: new object[] { "World" });
}
Protokolování výjimky pomocí aktivity:
// Start a new activity named "ExceptionExample".
using (var activity = activitySource.StartActivity("ExceptionExample"))
{
// Try to execute some code.
try
{
throw new Exception("Test exception");
}
// If an exception is thrown, catch it and set the activity status to "Error".
catch (Exception ex)
{
activity?.SetStatus(ActivityStatusCode.Error);
activity?.RecordException(ex);
}
}
Protokolování výjimky pomocí ILogger:
// Create a logger using the logger factory. The logger category name is used to filter and route log messages.
var logger = loggerFactory.CreateLogger("ExceptionExample");
try
{
// Try to execute some code.
throw new Exception("Test Exception");
}
catch (Exception ex)
{
// Log an error message with the exception. The log level is set to "Error" and the event ID is set to 0.
// The log message includes a template and a parameter. The template will be replaced with the value of the parameter when the log message is written.
logger.Log(
logLevel: LogLevel.Error,
eventId: 0,
exception: ex,
message: "Hello {name}.",
args: new object[] { "World" });
}
Můžete použít opentelemetry-api k aktualizaci stavu výjimek rozsahu a záznamů.
Přidejte opentelemetry-api-1.0.0.jar do aplikace (nebo novější):
Sada Node.js SDK exportuje tyto ručně zaznamenané výjimky založené na rozsahu do Application Insights jako výjimky, pokud jsou zaznamenány v podřízených umístěních vzdálených, interních rozpětích nebo v případě, že je výjimka zaznamenána v rozsahu nejvyšší úrovně.
// Import the Azure Monitor OpenTelemetry plugin and OpenTelemetry API
const { useAzureMonitor } = require("@azure/monitor-opentelemetry");
const { trace } = require("@opentelemetry/api");
// Enable Azure Monitor integration
useAzureMonitor();
// Get the tracer for the "testTracer" namespace
const tracer = trace.getTracer("testTracer");
// Start a span with the name "hello"
let span = tracer.startSpan("hello");
// Try to throw an error
try {
throw new Error("Test Error");
}
// Catch the error and record it to the span
catch(error){
span.recordException(error);
}
Sada OpenTelemetry Python SDK se implementuje tak, aby se výjimky vyvolané automaticky zaznamenávaly a zaznamenávaly. Příklad tohoto chování najdete v následující ukázce kódu:
# Import the necessary packages.
from azure.monitor.opentelemetry import configure_azure_monitor
from opentelemetry import trace
# Configure OpenTelemetry to use Azure Monitor with the specified connection string.
# Replace `<your-connection-string>` with the connection string to your Azure Monitor Application Insights resource.
configure_azure_monitor(
connection_string="<your-connection-string>",
)
# Get a tracer for the current module.
tracer = trace.get_tracer("otel_azure_monitor_exception_demo")
# Exception events
try:
# Start a new span with the name "hello".
with tracer.start_as_current_span("hello") as span:
# This exception will be automatically recorded
raise Exception("Custom exception message.")
except Exception:
print("Exception raised")
Pokud chcete zaznamenat výjimky ručně, můžete tuto možnost zakázat v rámci správce kontextu a použít record_exception() ji přímo, jak je znázorněno v následujícím příkladu:
...
# Start a new span with the name "hello" and disable exception recording.
with tracer.start_as_current_span("hello", record_exception=False) as span:
try:
# Raise an exception.
raise Exception("Custom exception message.")
except Exception as ex:
# Manually record exception
span.record_exception(ex)
...
Přidání vlastních rozsahů
Vlastní rozsah můžete přidat ve dvou scénářích. Za prvé, pokud už knihovna instrumentace neshromažďuje požadavek na závislost. Za druhé, pokud chcete modelovat proces aplikace jako rozsah v zobrazení komplexní transakce.
Třídy Activity a ActivitySource z System.Diagnostics oboru názvů představují koncepty Span OpenTelemetry a Tracer, v uvedeném pořadí. Vytváříte ActivitySource přímo pomocí jeho konstruktoru místo pomocí .TracerProvider Každá ActivitySource třída musí být explicitně připojena TracerProvider pomocí .AddSource() Je to proto, že části rozhraní API trasování OpenTelemetry jsou začleněny přímo do modulu runtime .NET. Další informace najdete v tématu Úvod k rozhraní API pro trasování .NET OpenTelemetry.
// Define an activity source named "ActivitySourceName". This activity source will be used to create activities for all requests to the application.
internal static readonly ActivitySource activitySource = new("ActivitySourceName");
// Create an ASP.NET Core application builder.
var builder = WebApplication.CreateBuilder(args);
// Configure the OpenTelemetry tracer provider to add a source named "ActivitySourceName". This will ensure that all activities created by the activity source are traced.
builder.Services.ConfigureOpenTelemetryTracerProvider((sp, builder) => builder.AddSource("ActivitySourceName"));
// Add the Azure Monitor telemetry service to the application. This service will collect and send telemetry data to Azure Monitor.
builder.Services.AddOpenTelemetry().UseAzureMonitor();
// Build the ASP.NET Core application.
var app = builder.Build();
// Map a GET request to the root path ("/") to the specified action.
app.MapGet("/", () =>
{
// Start a new activity named "CustomActivity". This activity will be traced and the trace data will be sent to Azure Monitor.
using (var activity = activitySource.StartActivity("CustomActivity"))
{
// your code here
}
// Return a response message.
return $"Hello World!";
});
// Start the ASP.NET Core application.
app.Run();
StartActivity výchozí hodnota ActivityKind.Internalje , ale můžete poskytnout jakékoli jiné ActivityKind.
ActivityKind.Client, ActivityKind.Producera ActivityKind.Internal jsou mapovány na Application Insights dependencies.
ActivityKind.Server a ActivityKind.Consumer jsou mapovány na Application Insights requests.
Poznámka:
Třídy Activity a ActivitySource z System.Diagnostics oboru názvů představují koncepty Span OpenTelemetry a Tracer, v uvedeném pořadí. Vytváříte ActivitySource přímo pomocí jeho konstruktoru místo pomocí .TracerProvider Každá ActivitySource třída musí být explicitně připojena TracerProvider pomocí .AddSource() Je to proto, že části rozhraní API trasování OpenTelemetry jsou začleněny přímo do modulu runtime .NET. Další informace najdete v tématu Úvod k rozhraní API pro trasování .NET OpenTelemetry.
// Create an OpenTelemetry tracer provider builder.
// It is important to keep the TracerProvider instance active throughout the process lifetime.
using var tracerProvider = Sdk.CreateTracerProviderBuilder()
.AddSource("ActivitySourceName")
.AddAzureMonitorTraceExporter()
.Build();
// Create an activity source named "ActivitySourceName".
var activitySource = new ActivitySource("ActivitySourceName");
// Start a new activity named "CustomActivity". This activity will be traced and the trace data will be sent to Azure Monitor.
using (var activity = activitySource.StartActivity("CustomActivity"))
{
// your code here
}
StartActivity výchozí hodnota ActivityKind.Internalje , ale můžete poskytnout jakékoli jiné ActivityKind.
ActivityKind.Client, ActivityKind.Producera ActivityKind.Internal jsou mapovány na Application Insights dependencies.
ActivityKind.Server a ActivityKind.Consumer jsou mapovány na Application Insights requests.
Použití poznámky OpenTelemetry
Nejjednodušší způsob, jak přidat vlastní rozsahy, je použití anotace OpenTelemetry @WithSpan .
Zaplní tabulky requests a dependencies tabulky v Application Insights.
Přidejte opentelemetry-instrumentation-annotations-1.32.0.jar do aplikace (nebo novější):
Ve výchozím nastavení končí rozsah v dependencies tabulce s typem InProczávislosti .
U metod představujících úlohu na pozadí, kterou autoinstrumentace nezachytí, doporučujeme použít atribut kind = SpanKind.SERVER na @WithSpan anotaci, aby se zajistilo, že se zobrazí v tabulce Application Insights requests .
Použití rozhraní OpenTelemetry API
Pokud předchozí poznámka OpenTelemetry @WithSpan nevyhovuje vašim potřebám, můžete rozsahy přidat pomocí rozhraní API OpenTelemetry.
Přidejte opentelemetry-api-1.0.0.jar do aplikace (nebo novější):
import io.opentelemetry.api.trace.Tracer;
static final Tracer tracer = openTelemetry.getTracer("com.example");
Vytvořte rozsah, nastavte ho jako aktuální a pak ho ukončete:
Span span = tracer.spanBuilder("my first span").startSpan();
try (Scope ignored = span.makeCurrent()) {
// do stuff within the context of this
} catch (Throwable t) {
span.recordException(t);
} finally {
span.end();
}
// Import the Azure Monitor OpenTelemetry plugin and OpenTelemetry API
const { useAzureMonitor } = require("@azure/monitor-opentelemetry");
const { trace } = require("@opentelemetry/api");
// Enable Azure Monitor integration
useAzureMonitor();
// Get the tracer for the "testTracer" namespace
const tracer = trace.getTracer("testTracer");
// Start a span with the name "hello"
let span = tracer.startSpan("hello");
// End the span
span.end();
Rozhraní API OpenTelemetry se dá použít k přidání vlastních rozsahů, které se zobrazují v requests tabulkách a dependencies v Application Insights.
Příklad kódu ukazuje, jak použít metodu tracer.start_as_current_span() ke spuštění, nastavit rozsah jako aktuální a ukončit rozsah v kontextu.
...
# Import the necessary packages.
from opentelemetry import trace
# Get a tracer for the current module.
tracer = trace.get_tracer(__name__)
# Start a new span with the name "my first span" and make it the current span.
# The "with" context manager starts, makes the span current, and ends the span within it's context
with tracer.start_as_current_span("my first span") as span:
try:
# Do stuff within the context of this span.
# All telemetry generated within this scope will be attributed to this span.
except Exception as ex:
# Record the exception on the span.
span.record_exception(ex)
...
Ve výchozím nastavení je rozsah v dependencies tabulce s typem InProczávislosti .
Pokud vaše metoda představuje úlohu na pozadí, která ještě není zachycena automatickou instruací, doporučujeme nastavit atribut kind = SpanKind.SERVER , aby se zajistilo, že se zobrazí v tabulce Application Insights requests .
...
# Import the necessary packages.
from opentelemetry import trace
from opentelemetry.trace import SpanKind
# Get a tracer for the current module.
tracer = trace.get_tracer(__name__)
# Start a new span with the name "my request span" and the kind set to SpanKind.SERVER.
with tracer.start_as_current_span("my request span", kind=SpanKind.SERVER) as span:
# Do stuff within the context of this span.
...
Odesílání vlastní telemetrie pomocí klasického rozhraní API Application Insights
Kdykoli je to možné, doporučujeme používat rozhraní API OpenTelemetry, ale v některých situacích může být nutné použít klasické rozhraní API Služby Application Insights.
Vlastní telemetrii není možné odesílat pomocí klasického rozhraní API Application Insights v javě nativní.
Pokud chcete přidat vlastní události nebo získat přístup k rozhraní API Application Insights, nahraďte @azure/monitor-opentelemetry balíček balíčkem applicationinsightsv3 Beta. Nabízí stejné metody a rozhraní a veškerý vzorový kód, který platí pro @azure/monitor-opentelemetry balíček v3 Beta.
// Import the TelemetryClient class from the Application Insights SDK for JavaScript.
const { TelemetryClient } = require("applicationinsights");
// Create a new TelemetryClient instance.
const telemetryClient = new TelemetryClient();
Pak použijte TelemetryClient k odesílání vlastní telemetrie:
Události
// Create an event telemetry object.
let eventTelemetry = {
name: "testEvent"
};
// Send the event telemetry object to Azure Monitor Application Insights.
telemetryClient.trackEvent(eventTelemetry);
Protokoly
// Create a trace telemetry object.
let traceTelemetry = {
message: "testMessage",
severity: "Information"
};
// Send the trace telemetry object to Azure Monitor Application Insights.
telemetryClient.trackTrace(traceTelemetry);
Výjimky
// Try to execute a block of code.
try {
...
}
// If an error occurs, catch it and send it to Azure Monitor Application Insights as an exception telemetry item.
catch (error) {
let exceptionTelemetry = {
exception: error,
severity: "Critical"
};
telemetryClient.trackException(exceptionTelemetry);
}
Na rozdíl od jiných jazyků Python nemá sadu Application Insights SDK. Pomocí distrou Služby Azure Monitor OpenTelemetry můžete s výjimkou odesílání customEventssplnit všechny své potřeby monitorování. Dokud se rozhraní API událostí OpenTelemetry stabilizuje, použijte rozšíření událostí služby Azure Monitor s distroem OpenTelemetry služby Azure Monitor k odeslání customEvents do Application Insights.
track_event K odesílání vlastních událostí použijte rozhraní API nabízené v rozšíření:
...
from azure.monitor.events.extension import track_event
from azure.monitor.opentelemetry import configure_azure_monitor
configure_azure_monitor()
# Use the track_event() api to send custom event telemetry
# Takes event name and custom dimensions
track_event("Test event", {"key1": "value1", "key2": "value2"})
input()
...
Úprava telemetrie
Tato část vysvětluje, jak upravit telemetrii.
Přidání atributů span
Mezi tyto atributy může patřit přidání vlastní vlastnosti do telemetrie. Pomocí atributů můžete také nastavit volitelná pole ve schématu Application Insights, jako je IP adresa klienta.
Přidání vlastní vlastnosti do spanu
Všechny atributy , které přidáte do rozsahů, se exportují jako vlastní vlastnosti. Naplní pole customDimensions v tabulce požadavků, závislostí, trasování nebo výjimek.
Pokud chcete přidat atributy span, použijte jeden z následujících dvou způsobů:
Použijte možnosti poskytované knihovnami instrumentace.
Přidání vlastního procesoru span
Tip
Výhodou použití možností poskytovaných knihovnami instrumentace, pokud jsou k dispozici, je, že je k dispozici celý kontext. V důsledku toho mohou uživatelé vybrat přidání nebo filtrování dalších atributů. Například možnost rozšiřování v knihovně instrumentace HttpClient poskytuje uživatelům přístup k HttpRequestMessage a samotné httpResponseMessage . Můžou z něj vybrat cokoli a uložit ho jako atribut.
Mnoho knihoven instrumentace nabízí možnost obohacení. Pokyny najdete v souborech readme jednotlivých knihoven instrumentace:
Před přidáním služby Azure Monitor přidejte procesor uvedený tady.
// Create an ASP.NET Core application builder.
var builder = WebApplication.CreateBuilder(args);
// Configure the OpenTelemetry tracer provider to add a new processor named ActivityEnrichingProcessor.
builder.Services.ConfigureOpenTelemetryTracerProvider((sp, builder) => builder.AddProcessor(new ActivityEnrichingProcessor()));
// Add the Azure Monitor telemetry service to the application. This service will collect and send telemetry data to Azure Monitor.
builder.Services.AddOpenTelemetry().UseAzureMonitor();
// Build the ASP.NET Core application.
var app = builder.Build();
// Start the ASP.NET Core application.
app.Run();
Do projektu přidejte ActivityEnrichingProcessor.cs následující kód:
public class ActivityEnrichingProcessor : BaseProcessor<Activity>
{
public override void OnEnd(Activity activity)
{
// The updated activity will be available to all processors which are called after this processor.
activity.DisplayName = "Updated-" + activity.DisplayName;
activity.SetTag("CustomDimension1", "Value1");
activity.SetTag("CustomDimension2", "Value2");
}
}
Pokud chcete přidat atributy span, použijte jeden z následujících dvou způsobů:
Použijte možnosti poskytované knihovnami instrumentace.
Přidání vlastního procesoru span
Tip
Výhodou použití možností poskytovaných knihovnami instrumentace, pokud jsou k dispozici, je, že je k dispozici celý kontext. V důsledku toho mohou uživatelé vybrat přidání nebo filtrování dalších atributů. Například možnost rozšiřování v knihovně instrumentace HttpClient poskytuje uživatelům přístup k samotné httpRequestMessage. Můžou z něj vybrat cokoli a uložit ho jako atribut.
Mnoho knihoven instrumentace nabízí možnost obohacení. Pokyny najdete v souborech readme jednotlivých knihoven instrumentace:
Před exportérem služby Azure Monitor přidejte procesor uvedený zde.
// Create an OpenTelemetry tracer provider builder.
// It is important to keep the TracerProvider instance active throughout the process lifetime.
using var tracerProvider = Sdk.CreateTracerProviderBuilder()
// Add a source named "OTel.AzureMonitor.Demo".
.AddSource("OTel.AzureMonitor.Demo") // Add a new processor named ActivityEnrichingProcessor.
.AddProcessor(new ActivityEnrichingProcessor()) // Add the Azure Monitor trace exporter.
.AddAzureMonitorTraceExporter() // Add the Azure Monitor trace exporter.
.Build();
Do projektu přidejte ActivityEnrichingProcessor.cs následující kód:
public class ActivityEnrichingProcessor : BaseProcessor<Activity>
{
// The OnEnd method is called when an activity is finished. This is the ideal place to enrich the activity with additional data.
public override void OnEnd(Activity activity)
{
// Update the activity's display name.
// The updated activity will be available to all processors which are called after this processor.
activity.DisplayName = "Updated-" + activity.DisplayName;
// Set custom tags on the activity.
activity.SetTag("CustomDimension1", "Value1");
activity.SetTag("CustomDimension2", "Value2");
}
}
Můžete použít opentelemetry-api k přidání atributů do rozsahů.
Přidání jednoho nebo více atributů span naplní customDimensions pole v requeststabulce , dependencies, tracesnebo exceptions tabulce.
Přidejte opentelemetry-api-1.0.0.jar do aplikace (nebo novější):
...
# Import the necessary packages.
from azure.monitor.opentelemetry import configure_azure_monitor
from opentelemetry import trace
# Create a SpanEnrichingProcessor instance.
span_enrich_processor = SpanEnrichingProcessor()
# Configure OpenTelemetry to use Azure Monitor with the specified connection string.
# Replace `<your-connection-string>` with the connection string to your Azure Monitor Application Insights resource.
configure_azure_monitor(
connection_string="<your-connection-string>",
# Configure the custom span processors to include span enrich processor.
span_processors=[span_enrich_processor],
)
...
Do projektu přidejte SpanEnrichingProcessor následující kód:
# Import the SpanProcessor class from the opentelemetry.sdk.trace module.
from opentelemetry.sdk.trace import SpanProcessor
class SpanEnrichingProcessor(SpanProcessor):
def on_end(self, span):
# Prefix the span name with the string "Updated-".
span._name = "Updated-" + span.name
# Add the custom dimension "CustomDimension1" with the value "Value1".
span._attributes["CustomDimension1"] = "Value1"
# Add the custom dimension "CustomDimension2" with the value "Value2".
span._attributes["CustomDimension2"] = "Value2"
Nastavení IP adresy uživatele
Pole client_IP pro žádosti můžete naplnit nastavením atributu v rozsahu. Application Insights používá IP adresu k vygenerování atributů umístění uživatele a ve výchozím nastavení ji zahodí.
Použijte příklad vlastní vlastnosti, ale nahraďte následující řádky kódu vActivityEnrichingProcessor.cs:
// Add the client IP address to the activity as a tag.
// only applicable in case of activity.Kind == Server
activity.SetTag("client.address", "<IP Address>");
Použijte příklad vlastní vlastnosti, ale nahraďte následující řádky kódu vActivityEnrichingProcessor.cs:
// Add the client IP address to the activity as a tag.
// only applicable in case of activity.Kind == Server
activity.SetTag("client.address", "<IP Address>");
Java toto pole automaticky naplní.
Toto pole se vyplní automaticky.
Použijte příklad vlastní vlastnosti, ale nahraďte následující řádky kódu:
...
// Import the SemanticAttributes class from the @opentelemetry/semantic-conventions package.
const { SemanticAttributes } = require("@opentelemetry/semantic-conventions");
// Create a new SpanEnrichingProcessor class.
class SpanEnrichingProcessor implements SpanProcessor {
onEnd(span) {
// Set the HTTP_CLIENT_IP attribute on the span to the IP address of the client.
span.attributes[SemanticAttributes.HTTP_CLIENT_IP] = "<IP Address>";
}
}
Použijte příklad vlastní vlastnosti, ale nahraďte následující řádky kódu vSpanEnrichingProcessor.py:
# Set the `http.client_ip` attribute of the span to the specified IP address.
span._attributes["http.client_ip"] = "<IP Address>"
Nastavení ID uživatele nebo ověřeného ID uživatele
Pole user_Id nebo user_AuthenticatedId pro žádosti můžete naplnit pomocí následujících doprovodných materiálů. ID uživatele je anonymní identifikátor uživatele. Ověřené ID uživatele je známý identifikátor uživatele.
Důležité
Než nastavíte ID ověřeného uživatele, obraťte se na příslušné zákony o ochraně osobních údajů.
Použijte příklad vlastní vlastnosti, ale nahraďte následující řádky kódu:
...
// Import the SemanticAttributes class from the @opentelemetry/semantic-conventions package.
import { SemanticAttributes } from "@opentelemetry/semantic-conventions";
// Create a new SpanEnrichingProcessor class.
class SpanEnrichingProcessor implements SpanProcessor {
onEnd(span: ReadableSpan) {
// Set the ENDUSER_ID attribute on the span to the ID of the user.
span.attributes[SemanticAttributes.ENDUSER_ID] = "<User ID>";
}
}
Použijte příklad vlastní vlastnosti, ale nahraďte následující řádky kódu:
# Set the `enduser.id` attribute of the span to the specified user ID.
span._attributes["enduser.id"] = "<User ID>"
Knihovna protokolování Pythonu se automaticky implementuje. Vlastní dimenze můžete k protokolům připojit předáním slovníku do argumentu extra protokolů:
...
# Create a warning log message with the properties "key1" and "value1".
logger.warning("WARNING: Warning log with properties", extra={"key1": "value1"})
...
Získání ID trasování nebo ID rozsahu
Aktuálně aktivní span můžete získat Trace IDSpan ID pomocí následujícího postupu.
Třídy Activity a ActivitySource z System.Diagnostics oboru názvů představují koncepty Span OpenTelemetry a Tracer, v uvedeném pořadí. Je to proto, že části rozhraní API trasování OpenTelemetry jsou začleněny přímo do modulu runtime .NET. Další informace najdete v tématu Úvod k rozhraní API pro trasování .NET OpenTelemetry.
// Get the current activity.
Activity activity = Activity.Current;
// Get the trace ID of the activity.
string traceId = activity?.TraceId.ToHexString();
// Get the span ID of the activity.
string spanId = activity?.SpanId.ToHexString();
Poznámka:
Třídy Activity a ActivitySource z System.Diagnostics oboru názvů představují koncepty Span OpenTelemetry a Tracer, v uvedeném pořadí. Je to proto, že části rozhraní API trasování OpenTelemetry jsou začleněny přímo do modulu runtime .NET. Další informace najdete v tématu Úvod k rozhraní API pro trasování .NET OpenTelemetry.
// Get the current activity.
Activity activity = Activity.Current;
// Get the trace ID of the activity.
string traceId = activity?.TraceId.ToHexString();
// Get the span ID of the activity.
string spanId = activity?.SpanId.ToHexString();
Můžete použít opentelemetry-api k získání ID trasování nebo ID rozsahu.
Přidejte opentelemetry-api-1.0.0.jar do aplikace (nebo novější):
Získejte ID trasování požadavku a ID rozsahu v kódu:
// Import the trace module from the OpenTelemetry API.
const { trace } = require("@opentelemetry/api");
// Get the span ID and trace ID of the active span.
let spanId = trace.getActiveSpan().spanContext().spanId;
let traceId = trace.getActiveSpan().spanContext().traceId;
Získejte ID trasování požadavku a ID rozsahu v kódu:
# Import the necessary libraries.
from opentelemetry import trace
# Get the trace ID and span ID of the current span.
trace_id = trace.get_current_span().get_span_context().trace_id
span_id = trace.get_current_span().get_span_context().span_id
Další konfiguraci distribuce OpenTelemetry najdete v tématu Konfigurace OpenTelemetry služby Azure Monitor.
Informace o zdrojovém kódu najdete v úložišti Azure Monitor AspNetCore na GitHubu.
Pokud chcete nainstalovat balíček NuGet, vyhledat aktualizace nebo zobrazit poznámky k verzi, podívejte se na stránku balíčku NuGet AspNetCore služby Azure Monitor.
Pokud se chcete seznámit se službou Azure Monitor a OpenTelemetry, podívejte se na ukázkovou aplikaci Azure Monitoru.
Další informace o OpenTelemetry a její komunitě najdete v úložišti OpenTelemetry .NET Na GitHubu.
Pokud chcete povolit používání, povolte monitorování uživatelů ve webovém nebo prohlížeči.
Pokud chcete zkontrolovat zdrojový kód, projděte si úložiště GitHubu exportéru služby Azure Monitor.
Pokud chcete nainstalovat balíček NuGet, vyhledat aktualizace nebo zobrazit poznámky k verzi, podívejte se na stránku balíčku NuGet exportéru služby Azure Monitor.
Pokud se chcete seznámit se službou Azure Monitor a OpenTelemetry, podívejte se na ukázkovou aplikaci Azure Monitoru.
Další informace o OpenTelemetry a její komunitě najdete v úložišti OpenTelemetry .NET Na GitHubu.
Pokud chcete povolit používání, povolte monitorování uživatelů ve webovém nebo prohlížeči.
Další ukázky a případy použití najdete v ukázkách distribuce služby Azure Monitor.
Přečtěte si poznámky k verzi na GitHubu.
Pokud chcete nainstalovat balíček PyPI, vyhledat aktualizace nebo zobrazit poznámky k verzi, podívejte se na stránku balíčku Azure Monitor Distro PyPI.
Pokud se chcete seznámit se službou Azure Monitor Application Insights a OpenTelemetry, podívejte se na ukázkovou aplikaci služby Azure Monitor.
Další informace o OpenTelemetry a její komunitě najdete v úložišti GitHub v Pythonu OpenTelemetry.
Informace o dostupných instrumentacích a komponentách OpenTelemetry najdete v úložišti GitHubu pro Přispěvatel OpenTelemetry v Pythonu.
Pokud chcete povolit používání, povolte monitorování uživatelů ve webovém nebo prohlížeči.