共用方式為


使用 CNG 加密資料

任何密碼編譯 API 的主要用途是加密和解密資料。 CNG 可讓您使用最少的函式呼叫來加密資料,並可讓您執行所有記憶體管理。 雖然許多通訊協定實作詳細資料都保留給使用者,但 CNG 會提供執行實際資料加密和解密工作的基本類型。

加密資料

若要加密資料,請執行下列步驟:

  1. 開啟支援加密的演算法提供者,例如 BCRYPT_DES_ALGORITHM

  2. 建立用來加密資料的金鑰。 您可以使用下列任一函式來建立金鑰:

    注意

    相較于對稱金鑰加密,使用非對稱金鑰的資料加密和解密會耗用大量計算。 如果您需要使用非對稱金鑰來加密資料,您應該使用對稱金鑰來加密資料、使用非對稱金鑰加密對稱金鑰,以及包含加密的對稱金鑰與訊息。 然後,收件者可以解密對稱金鑰,並使用對稱金鑰來解密資料。

     

  3. 取得加密資料的大小。 這是以加密演算法為基礎,如果有任何) ,則填補配置 (,以及要加密的資料大小。 您可以使用BCryptEncrypt函式來取得加密的資料大小,並傳遞pbOutput參數的Null。 除了 pbInput 參數以外,所有其他參數都必須與實際加密資料時相同,在此情況下不會使用。

  4. 您可以使用相同的緩衝區來就地加密資料,或將資料加密成個別的緩衝區。

    如果您想要就地加密資料,請在BCryptEncrypt函式中傳遞pbInputpbOutput參數的純文字緩衝區指標。 加密的資料大小可能大於未加密的資料大小,因此純文字緩衝區必須夠大,才能保存加密的資料,而不只是純文字。 您可以使用步驟 3 中取得的大小來配置純文字緩衝區。

    如果您想要將資料加密成個別緩衝區,請使用步驟 3 中取得的大小,為加密的資料配置記憶體緩衝區。

  5. 呼叫 BCryptEncrypt 函式來加密資料。 此函式會將加密的資料寫入 pbOutput 參數中提供的位置。

  6. 視需要保存加密的資料。

  7. 重複步驟 5 和 6,直到所有資料都已加密為止。

加密資料範例

下列範例示範如何使用進階加密標準對稱加密演算法,以 CNG 加密資料。

// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (C) Microsoft. All rights reserved.
/*++

Abstract:
    Sample program for AES-CBC encryption using CNG

--*/

#include <windows.h>
#include <stdio.h>
#include <bcrypt.h>

#define NT_SUCCESS(Status)          (((NTSTATUS)(Status)) >= 0)

#define STATUS_UNSUCCESSFUL         ((NTSTATUS)0xC0000001L)


#define DATA_TO_ENCRYPT  "Test Data"


const BYTE rgbPlaintext[] = 
{
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 
    0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};

static const BYTE rgbIV[] =
{
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};

static const BYTE rgbAES128Key[] =
{
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 
    0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};

void PrintBytes(
                IN BYTE     *pbPrintData,
                IN DWORD    cbDataLen)
{
    DWORD dwCount = 0;

    for(dwCount=0; dwCount < cbDataLen;dwCount++)
    {
        printf("0x%02x, ",pbPrintData[dwCount]);

        if(0 == (dwCount + 1 )%10) putchar('\n');
    }

}

void __cdecl wmain(
                   int                      argc, 
                   __in_ecount(argc) LPWSTR *wargv)
{

    BCRYPT_ALG_HANDLE       hAesAlg                     = NULL;
    BCRYPT_KEY_HANDLE       hKey                        = NULL;
    NTSTATUS                status                      = STATUS_UNSUCCESSFUL;
    DWORD                   cbCipherText                = 0, 
                            cbPlainText                 = 0,
                            cbData                      = 0, 
                            cbKeyObject                 = 0,
                            cbBlockLen                  = 0,
                            cbBlob                      = 0;
    PBYTE                   pbCipherText                = NULL,
                            pbPlainText                 = NULL,
                            pbKeyObject                 = NULL,
                            pbIV                        = NULL,
                            pbBlob                      = NULL;

    UNREFERENCED_PARAMETER(argc);
    UNREFERENCED_PARAMETER(wargv);


    // Open an algorithm handle.
    if(!NT_SUCCESS(status = BCryptOpenAlgorithmProvider(
                                                &hAesAlg,
                                                BCRYPT_AES_ALGORITHM,
                                                NULL,
                                                0)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptOpenAlgorithmProvider\n", status);
        goto Cleanup;
    }

    // Calculate the size of the buffer to hold the KeyObject.
    if(!NT_SUCCESS(status = BCryptGetProperty(
                                        hAesAlg, 
                                        BCRYPT_OBJECT_LENGTH, 
                                        (PBYTE)&cbKeyObject, 
                                        sizeof(DWORD), 
                                        &cbData, 
                                        0)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptGetProperty\n", status);
        goto Cleanup;
    }

    // Allocate the key object on the heap.
    pbKeyObject = (PBYTE)HeapAlloc (GetProcessHeap (), 0, cbKeyObject);
    if(NULL == pbKeyObject)
    {
        wprintf(L"**** memory allocation failed\n");
        goto Cleanup;
    }

   // Calculate the block length for the IV.
    if(!NT_SUCCESS(status = BCryptGetProperty(
                                        hAesAlg, 
                                        BCRYPT_BLOCK_LENGTH, 
                                        (PBYTE)&cbBlockLen, 
                                        sizeof(DWORD), 
                                        &cbData, 
                                        0)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptGetProperty\n", status);
        goto Cleanup;
    }

    // Determine whether the cbBlockLen is not longer than the IV length.
    if (cbBlockLen > sizeof (rgbIV))
    {
        wprintf (L"**** block length is longer than the provided IV length\n");
        goto Cleanup;
    }

    // Allocate a buffer for the IV. The buffer is consumed during the 
    // encrypt/decrypt process.
    pbIV= (PBYTE) HeapAlloc (GetProcessHeap (), 0, cbBlockLen);
    if(NULL == pbIV)
    {
        wprintf(L"**** memory allocation failed\n");
        goto Cleanup;
    }

    memcpy(pbIV, rgbIV, cbBlockLen);

    if(!NT_SUCCESS(status = BCryptSetProperty(
                                hAesAlg, 
                                BCRYPT_CHAINING_MODE, 
                                (PBYTE)BCRYPT_CHAIN_MODE_CBC, 
                                sizeof(BCRYPT_CHAIN_MODE_CBC), 
                                0)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptSetProperty\n", status);
        goto Cleanup;
    }

                

     // Generate the key from supplied input key bytes.
    if(!NT_SUCCESS(status = BCryptGenerateSymmetricKey(
                                        hAesAlg, 
                                        &hKey, 
                                        pbKeyObject, 
                                        cbKeyObject, 
                                        (PBYTE)rgbAES128Key, 
                                        sizeof(rgbAES128Key), 
                                        0)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptGenerateSymmetricKey\n", status);
        goto Cleanup;
    }

  
    // Save another copy of the key for later.
    if(!NT_SUCCESS(status = BCryptExportKey(
                                        hKey,
                                        NULL,
                                        BCRYPT_OPAQUE_KEY_BLOB,
                                        NULL,
                                        0,
                                        &cbBlob,
                                        0)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptExportKey\n", status);
        goto Cleanup;
    }


    // Allocate the buffer to hold the BLOB.
    pbBlob = (PBYTE)HeapAlloc (GetProcessHeap (), 0, cbBlob);
    if(NULL == pbBlob)
    {
        wprintf(L"**** memory allocation failed\n");
        goto Cleanup;
    }

    if(!NT_SUCCESS(status = BCryptExportKey(
                                        hKey, 
                                        NULL, 
                                        BCRYPT_OPAQUE_KEY_BLOB,
                                        pbBlob, 
                                        cbBlob, 
                                        &cbBlob, 
                                        0)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptExportKey\n", status);
        goto Cleanup;
    }
 
    cbPlainText = sizeof(rgbPlaintext);
    pbPlainText = (PBYTE)HeapAlloc (GetProcessHeap (), 0, cbPlainText);
    if(NULL == pbPlainText)
    {
        wprintf(L"**** memory allocation failed\n");
        goto Cleanup;
    }

    memcpy(pbPlainText, rgbPlaintext, sizeof(rgbPlaintext));
    
    //
    // Get the output buffer size.
    //
    if(!NT_SUCCESS(status = BCryptEncrypt(
                                        hKey, 
                                        pbPlainText, 
                                        cbPlainText,
                                        NULL,
                                        pbIV,
                                        cbBlockLen,
                                        NULL, 
                                        0, 
                                        &cbCipherText, 
                                        BCRYPT_BLOCK_PADDING)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptEncrypt\n", status);
        goto Cleanup;
    }

    pbCipherText = (PBYTE)HeapAlloc (GetProcessHeap (), 0, cbCipherText);
    if(NULL == pbCipherText)
    {
        wprintf(L"**** memory allocation failed\n");
        goto Cleanup;
    }

    // Use the key to encrypt the plaintext buffer.
    // For block sized messages, block padding will add an extra block.
    if(!NT_SUCCESS(status = BCryptEncrypt(
                                        hKey, 
                                        pbPlainText, 
                                        cbPlainText,
                                        NULL,
                                        pbIV,
                                        cbBlockLen, 
                                        pbCipherText, 
                                        cbCipherText, 
                                        &cbData, 
                                        BCRYPT_BLOCK_PADDING)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptEncrypt\n", status);
        goto Cleanup;
    }

    // Destroy the key and reimport from saved BLOB.
    if(!NT_SUCCESS(status = BCryptDestroyKey(hKey)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptDestroyKey\n", status);
        goto Cleanup;
    }    
    hKey = 0;

    if(pbPlainText)
    {
        HeapFree(GetProcessHeap(), 0, pbPlainText);
    }

    pbPlainText = NULL;

    // We can reuse the key object.
    memset(pbKeyObject, 0 , cbKeyObject);

    
    // Reinitialize the IV because encryption would have modified it.
    memcpy(pbIV, rgbIV, cbBlockLen);


    if(!NT_SUCCESS(status = BCryptImportKey(
                                        hAesAlg,
                                        NULL,
                                        BCRYPT_OPAQUE_KEY_BLOB,
                                        &hKey,
                                        pbKeyObject,
                                        cbKeyObject,
                                        pbBlob,
                                        cbBlob,
                                        0)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptGenerateSymmetricKey\n", status);
        goto Cleanup;
    }
       

    //
    // Get the output buffer size.
    //
    if(!NT_SUCCESS(status = BCryptDecrypt(
                                    hKey, 
                                    pbCipherText, 
                                    cbCipherText, 
                                    NULL,
                                    pbIV,
                                    cbBlockLen,
                                    NULL, 
                                    0, 
                                    &cbPlainText, 
                                    BCRYPT_BLOCK_PADDING)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptDecrypt\n", status);
        goto Cleanup;
    }

    pbPlainText = (PBYTE)HeapAlloc (GetProcessHeap (), 0, cbPlainText);
    if(NULL == pbPlainText)
    {
        wprintf(L"**** memory allocation failed\n");
        goto Cleanup;
    }

    if(!NT_SUCCESS(status = BCryptDecrypt(
                                    hKey, 
                                    pbCipherText, 
                                    cbCipherText, 
                                    NULL,
                                    pbIV, 
                                    cbBlockLen,
                                    pbPlainText, 
                                    cbPlainText, 
                                    &cbPlainText, 
                                    BCRYPT_BLOCK_PADDING)))
    {
        wprintf(L"**** Error 0x%x returned by BCryptDecrypt\n", status);
        goto Cleanup;
    }


    if (0 != memcmp(pbPlainText, (PBYTE)rgbPlaintext, sizeof(rgbPlaintext))) 
    {
        wprintf(L"Expected decrypted text comparison failed.\n");
        goto Cleanup;
    } 

    wprintf(L"Success!\n");


Cleanup:

    if(hAesAlg)
    {
        BCryptCloseAlgorithmProvider(hAesAlg,0);
    }

    if (hKey)    
    {
        BCryptDestroyKey(hKey);
    }

    if(pbCipherText)
    {
        HeapFree(GetProcessHeap(), 0, pbCipherText);
    }

    if(pbPlainText)
    {
        HeapFree(GetProcessHeap(), 0, pbPlainText);
    }

    if(pbKeyObject)
    {
        HeapFree(GetProcessHeap(), 0, pbKeyObject);
    }

    if(pbIV)
    {
        HeapFree(GetProcessHeap(), 0, pbIV);
    }

}

解密資料

若要解密資料,請執行下列步驟:

  1. 開啟支援加密的演算法提供者,例如 BCRYPT_DES_ALGORITHM

  2. 取得資料已加密的金鑰,並使用該金鑰取得金鑰的控制碼。

  3. 取得解密資料的大小。 這是以加密演算法為基礎,如果有任何) ,則填補配置 (,以及要解密的資料大小。 您可以使用BCryptDecrypt函式來取得加密的資料大小,並傳遞pbOutput參數的Null。 指定填補配置和 初始化向量 的參數 (IV) 必須與加密資料時相同,但 在此 案例中不會使用。

  4. 為解密的資料配置記憶體緩衝區。

  5. 您可以使用相同的緩衝區來就地解密資料,或將資料解密成個別的緩衝區。

    如果您想要就地解密資料,請在BCryptDecrypt函式中傳遞pbInputpbOutput參數的加密文字緩衝區指標。

    如果您想要將資料解密成個別緩衝區,請使用步驟 3 中取得的大小,為解密的資料配置記憶體緩衝區。

  6. 呼叫 BCryptDecrypt 函式來解密資料。 指定填補配置和 IV 的參數必須與加密資料時相同。 此函式會將解密的資料寫入 pbOutput 參數中提供的位置。

  7. 視需要保存解密的資料。

  8. 重複步驟 5 和 6,直到所有資料都解密為止。