ID3D12GraphicsCommandList::ExecuteIndirect 方法 (d3d12.h)
應用程式會使用 ExecuteIndirect 方法執行間接繪製/分派。
語法
void ExecuteIndirect(
[in] ID3D12CommandSignature *pCommandSignature,
[in] UINT MaxCommandCount,
[in] ID3D12Resource *pArgumentBuffer,
[in] UINT64 ArgumentBufferOffset,
[in, optional] ID3D12Resource *pCountBuffer,
[in] UINT64 CountBufferOffset
);
參數
[in] pCommandSignature
指定 ID3D12CommandSignature。 pArgumentBuffer所參考的資料會根據命令簽章的內容來解譯。 如需用來建立命令簽章的 API,請參閱 間接繪圖 。
[in] MaxCommandCount
類型: UINT
有兩種方式可以指定命令計數:
- 如果 pCountBuffer 不是 Null, 則 MaxCommandCount 會指定將執行的作業數目上限。 實際執行的作業數目是由此值的最小值所定義,以及 pCountBuffer 中所包含的 32 位不帶正負號整數, (CountBufferOffset 所指定的位元組位移) 。
- 如果 pCountBuffer 為 Null, MaxCommandCount 會指定將執行的確切作業數目。
[in] pArgumentBuffer
類型: ID3D12Resource*
指定一或多個 ID3D12Resource 物件,其中包含命令引數。
[in] ArgumentBufferOffset
類型: UINT64
指定 pArgumentBuffer 中的位移,以識別第一個命令引數。
[in, optional] pCountBuffer
類型: ID3D12Resource*
指定 ID3D12Resource的指標。
[in] CountBufferOffset
類型: UINT64
指定位移至 pCountBuffer的 UINT64,識別引數計數。
傳回值
無
備註
此 API 的語意會使用下列虛擬程式碼來定義:
非 Null pCountBuffer:
// Read draw count out of count buffer
UINT CommandCount = pCountBuffer->ReadUINT32(CountBufferOffset);
CommandCount = min(CommandCount, MaxCommandCount)
// Get pointer to first Commanding argument
BYTE* Arguments = pArgumentBuffer->GetBase() + ArgumentBufferOffset;
for(UINT CommandIndex = 0; CommandIndex < CommandCount; CommandIndex++)
{
// Interpret the data contained in *Arguments
// according to the command signature
pCommandSignature->Interpret(Arguments);
Arguments += pCommandSignature->GetByteStride();
}
Null pCountBuffer:
// Get pointer to first Commanding argument
BYTE* Arguments = pArgumentBuffer->GetBase() + ArgumentBufferOffset;
for(UINT CommandIndex = 0; CommandIndex < MaxCommandCount; CommandIndex++)
{
// Interpret the data contained in *Arguments
// according to the command signature
pCommandSignature->Interpret(Arguments);
Arguments += pCommandSignature->GetByteStride();
}
如果計數緩衝區或引數緩衝區不是處於D3D12_RESOURCE_STATE_INDIRECT_ARGUMENT狀態,偵錯層就會發出錯誤。 核心執行時間將會驗證:
- CountBufferOffset 和 ArgumentBufferOffset 對齊 4 位元組
- pCountBuffer 和 pArgumentBuffer 是緩衝區資源, (任何堆積類型)
- MaxCommandCount、ArgumentBufferOffset和繪圖程式步幅所隱含的位移,不會超過pArgumentBuffer的界限, (同樣適用于計數緩衝區)
- 命令清單是直接命令清單或計算命令清單, (不是複製或 JPEG 解碼命令清單)
- 命令清單的根簽章符合命令簽章的根簽章
DrawInstancedIndirect
和 DrawIndexedInstancedIndirect
的兩個 API 功能是由 ExecuteIndirect所包含。
束
ID3D12GraphicsCommandList::ExecuteIndirect 只有在下列所有專案都成立時,才允許在套件組合命令清單中:- CountBuffer 是 Null (CPU 指定的計數,只) 。
- 命令簽章只包含一個作業。 這表示命令簽章不包含根引數變更,也不會包含 VB/IB 系結變更。
取得緩衝區虛擬位址
ID3D12Resource::GetGPUVirtualAddress方法可讓應用程式擷取緩衝區的 GPU 虛擬位址。應用程式可以自由地將位元組位移套用至虛擬位址,再將它們放在間接引數緩衝區中。 請注意,VB/IB/CB 的所有 D3D12 對齊需求仍適用于產生的 GPU 虛擬位址。
範例
D3D12ExecuteIndirect範例使用ID3D12GraphicsCommandList::ExecuteIndirect,如下所示:
// Data structure to match the command signature used for ExecuteIndirect.
struct IndirectCommand
{
D3D12_GPU_VIRTUAL_ADDRESS cbv;
D3D12_DRAW_ARGUMENTS drawArguments;
};
對 ExecuteIndirect的呼叫接近此清單結尾,在批註下方「繪製尚未加以擷取的三角形」。
// Fill the command list with all the render commands and dependent state.
void D3D12ExecuteIndirect::PopulateCommandLists()
{
// Command list allocators can only be reset when the associated
// command lists have finished execution on the GPU; apps should use
// fences to determine GPU execution progress.
ThrowIfFailed(m_computeCommandAllocators[m_frameIndex]->Reset());
ThrowIfFailed(m_commandAllocators[m_frameIndex]->Reset());
// However, when ExecuteCommandList() is called on a particular command
// list, that command list can then be reset at any time and must be before
// re-recording.
ThrowIfFailed(m_computeCommandList->Reset(m_computeCommandAllocators[m_frameIndex].Get(), m_computeState.Get()));
ThrowIfFailed(m_commandList->Reset(m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get()));
// Record the compute commands that will cull triangles and prevent them from being processed by the vertex shader.
if (m_enableCulling)
{
UINT frameDescriptorOffset = m_frameIndex * CbvSrvUavDescriptorCountPerFrame;
D3D12_GPU_DESCRIPTOR_HANDLE cbvSrvUavHandle = m_cbvSrvUavHeap->GetGPUDescriptorHandleForHeapStart();
m_computeCommandList->SetComputeRootSignature(m_computeRootSignature.Get());
ID3D12DescriptorHeap* ppHeaps[] = { m_cbvSrvUavHeap.Get() };
m_computeCommandList->SetDescriptorHeaps(_countof(ppHeaps), ppHeaps);
m_computeCommandList->SetComputeRootDescriptorTable(
SrvUavTable,
CD3DX12_GPU_DESCRIPTOR_HANDLE(cbvSrvUavHandle, CbvSrvOffset + frameDescriptorOffset, m_cbvSrvUavDescriptorSize));
m_computeCommandList->SetComputeRoot32BitConstants(RootConstants, 4, reinterpret_cast<void*>(&m_csRootConstants), 0);
// Reset the UAV counter for this frame.
m_computeCommandList->CopyBufferRegion(m_processedCommandBuffers[m_frameIndex].Get(), CommandBufferSizePerFrame, m_processedCommandBufferCounterReset.Get(), 0, sizeof(UINT));
D3D12_RESOURCE_BARRIER barrier = CD3DX12_RESOURCE_BARRIER::Transition(m_processedCommandBuffers[m_frameIndex].Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_UNORDERED_ACCESS);
m_computeCommandList->ResourceBarrier(1, &barrier);
m_computeCommandList->Dispatch(static_cast<UINT>(ceil(TriangleCount / float(ComputeThreadBlockSize))), 1, 1);
}
ThrowIfFailed(m_computeCommandList->Close());
// Record the rendering commands.
{
// Set necessary state.
m_commandList->SetGraphicsRootSignature(m_rootSignature.Get());
ID3D12DescriptorHeap* ppHeaps[] = { m_cbvSrvUavHeap.Get() };
m_commandList->SetDescriptorHeaps(_countof(ppHeaps), ppHeaps);
m_commandList->RSSetViewports(1, &m_viewport);
m_commandList->RSSetScissorRects(1, m_enableCulling ? &m_cullingScissorRect : &m_scissorRect);
// Indicate that the command buffer will be used for indirect drawing
// and that the back buffer will be used as a render target.
D3D12_RESOURCE_BARRIER barriers[2] = {
CD3DX12_RESOURCE_BARRIER::Transition(
m_enableCulling ? m_processedCommandBuffers[m_frameIndex].Get() : m_commandBuffer.Get(),
m_enableCulling ? D3D12_RESOURCE_STATE_UNORDERED_ACCESS : D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE,
D3D12_RESOURCE_STATE_INDIRECT_ARGUMENT),
CD3DX12_RESOURCE_BARRIER::Transition(
m_renderTargets[m_frameIndex].Get(),
D3D12_RESOURCE_STATE_PRESENT,
D3D12_RESOURCE_STATE_RENDER_TARGET)
};
m_commandList->ResourceBarrier(_countof(barriers), barriers);
CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart(), m_frameIndex, m_rtvDescriptorSize);
CD3DX12_CPU_DESCRIPTOR_HANDLE dsvHandle(m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
m_commandList->OMSetRenderTargets(1, &rtvHandle, FALSE, &dsvHandle);
// Record commands.
const float clearColor[] = { 0.0f, 0.2f, 0.4f, 1.0f };
m_commandList->ClearRenderTargetView(rtvHandle, clearColor, 0, nullptr);
m_commandList->ClearDepthStencilView(dsvHandle, D3D12_CLEAR_FLAG_DEPTH, 1.0f, 0, 0, nullptr);
m_commandList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
m_commandList->IASetVertexBuffers(0, 1, &m_vertexBufferView);
if (m_enableCulling)
{
// Draw the triangles that have not been culled.
m_commandList->ExecuteIndirect(
m_commandSignature.Get(),
TriangleCount,
m_processedCommandBuffers[m_frameIndex].Get(),
0,
m_processedCommandBuffers[m_frameIndex].Get(),
CommandBufferSizePerFrame);
}
else
{
// Draw all of the triangles.
m_commandList->ExecuteIndirect(
m_commandSignature.Get(),
TriangleCount,
m_commandBuffer.Get(),
CommandBufferSizePerFrame * m_frameIndex,
nullptr,
0);
}
// Indicate that the command buffer may be used by the compute shader
// and that the back buffer will now be used to present.
barriers[0].Transition.StateBefore = D3D12_RESOURCE_STATE_INDIRECT_ARGUMENT;
barriers[0].Transition.StateAfter = m_enableCulling ? D3D12_RESOURCE_STATE_COPY_DEST : D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE;
barriers[1].Transition.StateBefore = D3D12_RESOURCE_STATE_RENDER_TARGET;
barriers[1].Transition.StateAfter = D3D12_RESOURCE_STATE_PRESENT;
m_commandList->ResourceBarrier(_countof(barriers), barriers);
ThrowIfFailed(m_commandList->Close());
}
}
請參閱 D3D12 參考中的範例程式碼。
需求
目標平台 | Windows |
標頭 | d3d12.h |
程式庫 | D3d12.lib |
Dll | D3d12.dll |