在檔案內建立檢視
如果您想要檢視未從檔案開頭開始的檔案部分,您必須建立檔案對應物件。 這個物件是您想要檢視之檔案部分的大小,加上檔案中的位移。 例如,如果您想要檢視從 131,072 個位元組開始的 1 KB (1K) , (128K) 到檔案中,您必須建立至少 132,096 個位元組的檔案對應物件, (129K) 大小。 檢視會啟動 131,072 個位元組 (128K) 到檔案中,並至少擴充 1,024 個位元組。 此範例假設檔案配置細微性為 64K。
檔案配置細微性會影響地圖檢視可以啟動的位置。 地圖檢視必須從位移開始到檔案中,這是檔案配置資料細微性的倍數。 因此,您想要檢視的資料可能是檔案位移會將配置資料細微性模譯為檢視。 檢視的大小是資料模數配置細微性的位移,再加上您想要檢查的資料大小。
例如,假設 GetSystemInfo 函式表示 64K 的配置細微性。 若要檢查 1K 個 138,240 個位元組的資料, (135K) 檔案中,請執行下列動作:
- 建立大小至少為 139,264 個位元組的檔案對應物件, (136K) 。
- 建立檔案檢視,從檔案位移開始,這是檔案配置資料細微性的最大倍數,小於您需要的位移。 在此情況下,檔案檢視會從位移 131,072 開始, (128K) 檔案。 檢視139264位元組 (136K) 減去 131,072 個位元組 (128K) ,或大小為 8,192 個位元組 (8K) 。
- 在檢視中建立指標位移 7K,以存取您感興趣的 1K。
如果您想要將資料分層檔案配置資料細微性界限,您可以讓檢視大於檔案配置資料細微性。 這可避免將資料分成幾個部分。
下列程式說明上述第二個範例。
/*
This program demonstrates file mapping, especially how to align a
view with the system file allocation granularity.
*/
#include <windows.h>
#include <stdio.h>
#include <tchar.h>
#define BUFFSIZE 1024 // size of the memory to examine at any one time
#define FILE_MAP_START 138240 // starting point within the file of
// the data to examine (135K)
/* The test file. The code below creates the file and populates it,
so there is no need to supply it in advance. */
TCHAR * lpcTheFile = TEXT("fmtest.txt"); // the file to be manipulated
int main(void)
{
HANDLE hMapFile; // handle for the file's memory-mapped region
HANDLE hFile; // the file handle
BOOL bFlag; // a result holder
DWORD dBytesWritten; // number of bytes written
DWORD dwFileSize; // temporary storage for file sizes
DWORD dwFileMapSize; // size of the file mapping
DWORD dwMapViewSize; // the size of the view
DWORD dwFileMapStart; // where to start the file map view
DWORD dwSysGran; // system allocation granularity
SYSTEM_INFO SysInfo; // system information; used to get granularity
LPVOID lpMapAddress; // pointer to the base address of the
// memory-mapped region
char * pData; // pointer to the data
int i; // loop counter
int iData; // on success contains the first int of data
int iViewDelta; // the offset into the view where the data
//shows up
// Create the test file. Open it "Create Always" to overwrite any
// existing file. The data is re-created below
hFile = CreateFile(lpcTheFile,
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
NULL);
if (hFile == INVALID_HANDLE_VALUE)
{
_tprintf(TEXT("hFile is NULL\n"));
_tprintf(TEXT("Target file is %s\n"),
lpcTheFile);
return 4;
}
// Get the system allocation granularity.
GetSystemInfo(&SysInfo);
dwSysGran = SysInfo.dwAllocationGranularity;
// Now calculate a few variables. Calculate the file offsets as
// 64-bit values, and then get the low-order 32 bits for the
// function calls.
// To calculate where to start the file mapping, round down the
// offset of the data into the file to the nearest multiple of the
// system allocation granularity.
dwFileMapStart = (FILE_MAP_START / dwSysGran) * dwSysGran;
_tprintf (TEXT("The file map view starts at %ld bytes into the file.\n"),
dwFileMapStart);
// Calculate the size of the file mapping view.
dwMapViewSize = (FILE_MAP_START % dwSysGran) + BUFFSIZE;
_tprintf (TEXT("The file map view is %ld bytes large.\n"),
dwMapViewSize);
// How large will the file mapping object be?
dwFileMapSize = FILE_MAP_START + BUFFSIZE;
_tprintf (TEXT("The file mapping object is %ld bytes large.\n"),
dwFileMapSize);
// The data of interest isn't at the beginning of the
// view, so determine how far into the view to set the pointer.
iViewDelta = FILE_MAP_START - dwFileMapStart;
_tprintf (TEXT("The data is %d bytes into the view.\n"),
iViewDelta);
// Now write a file with data suitable for experimentation. This
// provides unique int (4-byte) offsets in the file for easy visual
// inspection. Note that this code does not check for storage
// medium overflow or other errors, which production code should
// do. Because an int is 4 bytes, the value at the pointer to the
// data should be one quarter of the desired offset into the file
for (i=0; i<(int)dwSysGran; i++)
{
WriteFile (hFile, &i, sizeof (i), &dBytesWritten, NULL);
}
// Verify that the correct file size was written.
dwFileSize = GetFileSize(hFile, NULL);
_tprintf(TEXT("hFile size: %10d\n"), dwFileSize);
// Create a file mapping object for the file
// Note that it is a good idea to ensure the file size is not zero
hMapFile = CreateFileMapping( hFile, // current file handle
NULL, // default security
PAGE_READWRITE, // read/write permission
0, // size of mapping object, high
dwFileMapSize, // size of mapping object, low
NULL); // name of mapping object
if (hMapFile == NULL)
{
_tprintf(TEXT("hMapFile is NULL: last error: %d\n"), GetLastError() );
return (2);
}
// Map the view and test the results.
lpMapAddress = MapViewOfFile(hMapFile, // handle to
// mapping object
FILE_MAP_ALL_ACCESS, // read/write
0, // high-order 32
// bits of file
// offset
dwFileMapStart, // low-order 32
// bits of file
// offset
dwMapViewSize); // number of bytes
// to map
if (lpMapAddress == NULL)
{
_tprintf(TEXT("lpMapAddress is NULL: last error: %d\n"), GetLastError());
return 3;
}
// Calculate the pointer to the data.
pData = (char *) lpMapAddress + iViewDelta;
// Extract the data, an int. Cast the pointer pData from a "pointer
// to char" to a "pointer to int" to get the whole thing
iData = *(int *)pData;
_tprintf (TEXT("The value at the pointer is %d,\nwhich %s one quarter of the desired file offset.\n"),
iData,
iData*4 == FILE_MAP_START ? TEXT("is") : TEXT("is not"));
// Close the file mapping object and the open file
bFlag = UnmapViewOfFile(lpMapAddress);
bFlag = CloseHandle(hMapFile); // close the file mapping object
if(!bFlag)
{
_tprintf(TEXT("\nError %ld occurred closing the mapping object!"),
GetLastError());
}
bFlag = CloseHandle(hFile); // close the file itself
if(!bFlag)
{
_tprintf(TEXT("\nError %ld occurred closing the file!"),
GetLastError());
}
return 0;
}
相關主題