練習 - 估計實際問題的資源

已完成

Shor 的分解演算法是最著名的量子演算法之一。 它提供超過任何已知傳統分解演算法的指數型加速。

傳統密碼編譯會使用實體或數學方式 (例如計算困難) 來完成工作。 熱門的密碼編譯通訊協定是 Rivest-Shamir–Adleman (RSA) 配置,其以假設使用傳統電腦難以分解質數為基礎。

Shor 演算法意味著只要有足夠龐大的量子電腦,便可以破解公開金鑰加密。 評估 Shor 演算法所需的資源,對於評估這些密碼編譯配置類型的弱點很重要。

在下列練習中,您將計算分解 2,048 位元整數的資源估計值。 針對此應用程式,您將直接從預先計算的邏輯資源估計值計算實體資源估計值。 針對容許的錯誤預算,您將會使用 $\epsilon = 1/3$。

撰寫 Shor 演算法

  1. 在 Visual Studio Code 中,選取 [檢視]>[命令選擇區],然後選取 [建立:新增 Jupyter Notebook]

  2. 將筆記本儲存為 ShorRE.ipynb

  3. 在第一個儲存格中,匯入 qsharp 套件:

    import qsharp
    
  4. 使用 Microsoft.Quantum.ResourceEstimation 命名空間來定義 Shor 整數分解演算法的快取最佳化版本。 新增儲存格並複製貼上下列程式碼:

    %%qsharp
    open Microsoft.Quantum.Arrays;
    open Microsoft.Quantum.Canon;
    open Microsoft.Quantum.Convert;
    open Microsoft.Quantum.Diagnostics;
    open Microsoft.Quantum.Intrinsic;
    open Microsoft.Quantum.Math;
    open Microsoft.Quantum.Measurement;
    open Microsoft.Quantum.Unstable.Arithmetic;
    open Microsoft.Quantum.ResourceEstimation;
    
    operation RunProgram() : Unit {
        let bitsize = 31;
    
        // When choosing parameters for `EstimateFrequency`, make sure that
        // generator and modules are not co-prime
        let _ = EstimateFrequency(11, 2^bitsize - 1, bitsize);
    }
    
    
    // In this sample we concentrate on costing the `EstimateFrequency`
    // operation, which is the core quantum operation in Shors algorithm, and
    // we omit the classical pre- and post-processing.
    
    /// # Summary
    /// Estimates the frequency of a generator
    /// in the residue ring Z mod `modulus`.
    ///
    /// # Input
    /// ## generator
    /// The unsigned integer multiplicative order (period)
    /// of which is being estimated. Must be co-prime to `modulus`.
    /// ## modulus
    /// The modulus which defines the residue ring Z mod `modulus`
    /// in which the multiplicative order of `generator` is being estimated.
    /// ## bitsize
    /// Number of bits needed to represent the modulus.
    ///
    /// # Output
    /// The numerator k of dyadic fraction k/2^bitsPrecision
    /// approximating s/r.
    operation EstimateFrequency(
        generator : Int,
        modulus : Int,
        bitsize : Int
    )
    : Int {
        mutable frequencyEstimate = 0;
        let bitsPrecision =  2 * bitsize + 1;
    
        // Allocate qubits for the superposition of eigenstates of
        // the oracle that is used in period finding.
        use eigenstateRegister = Qubit[bitsize];
    
        // Initialize eigenstateRegister to 1, which is a superposition of
        // the eigenstates we are estimating the phases of.
        // We first interpret the register as encoding an unsigned integer
        // in little endian encoding.
        ApplyXorInPlace(1, eigenstateRegister);
        let oracle = ApplyOrderFindingOracle(generator, modulus, _, _);
    
        // Use phase estimation with a semiclassical Fourier transform to
        // estimate the frequency.
        use c = Qubit();
        for idx in bitsPrecision - 1..-1..0 {
            within {
                H(c);
            } apply {
                // `BeginEstimateCaching` and `EndEstimateCaching` are the operations
                // exposed by Azure Quantum Resource Estimator. These will instruct
                // resource counting such that the if-block will be executed
                // only once, its resources will be cached, and appended in
                // every other iteration.
                if BeginEstimateCaching("ControlledOracle", SingleVariant()) {
                    Controlled oracle([c], (1 <<< idx, eigenstateRegister));
                    EndEstimateCaching();
                }
                R1Frac(frequencyEstimate, bitsPrecision - 1 - idx, c);
            }
            if MResetZ(c) == One {
                set frequencyEstimate += 1 <<< (bitsPrecision - 1 - idx);
            }
        }
    
        // Return all the qubits used for oracles eigenstate back to 0 state
        // using Microsoft.Quantum.Intrinsic.ResetAll.
        ResetAll(eigenstateRegister);
    
        return frequencyEstimate;
    }
    
    /// # Summary
    /// Interprets `target` as encoding unsigned little-endian integer k
    /// and performs transformation |k⟩ ↦ |gᵖ⋅k mod N ⟩ where
    /// p is `power`, g is `generator` and N is `modulus`.
    ///
    /// # Input
    /// ## generator
    /// The unsigned integer multiplicative order ( period )
    /// of which is being estimated. Must be co-prime to `modulus`.
    /// ## modulus
    /// The modulus which defines the residue ring Z mod `modulus`
    /// in which the multiplicative order of `generator` is being estimated.
    /// ## power
    /// Power of `generator` by which `target` is multiplied.
    /// ## target
    /// Register interpreted as LittleEndian which is multiplied by
    /// given power of the generator. The multiplication is performed modulo
    /// `modulus`.
    internal operation ApplyOrderFindingOracle(
        generator : Int, modulus : Int, power : Int, target : Qubit[]
    )
    : Unit
    is Adj + Ctl {
        // The oracle we use for order finding implements |x⟩ ↦ |x⋅a mod N⟩. We
        // also use `ExpModI` to compute a by which x must be multiplied. Also
        // note that we interpret target as unsigned integer in little-endian
        // encoding by using the `LittleEndian` type.
        ModularMultiplyByConstant(modulus,
                                    ExpModI(generator, power, modulus),
                                    target);
    }
    
    /// # Summary
    /// Performs modular in-place multiplication by a classical constant.
    ///
    /// # Description
    /// Given the classical constants `c` and `modulus`, and an input
    /// quantum register (as LittleEndian) |𝑦⟩, this operation
    /// computes `(c*x) % modulus` into |𝑦⟩.
    ///
    /// # Input
    /// ## modulus
    /// Modulus to use for modular multiplication
    /// ## c
    /// Constant by which to multiply |𝑦⟩
    /// ## y
    /// Quantum register of target
    internal operation ModularMultiplyByConstant(modulus : Int, c : Int, y : Qubit[])
    : Unit is Adj + Ctl {
        use qs = Qubit[Length(y)];
        for (idx, yq) in Enumerated(y) {
            let shiftedC = (c <<< idx) % modulus;
            Controlled ModularAddConstant([yq], (modulus, shiftedC, qs));
        }
        ApplyToEachCA(SWAP, Zipped(y, qs));
        let invC = InverseModI(c, modulus);
        for (idx, yq) in Enumerated(y) {
            let shiftedC = (invC <<< idx) % modulus;
            Controlled ModularAddConstant([yq], (modulus, modulus - shiftedC, qs));
        }
    }
    
    /// # Summary
    /// Performs modular in-place addition of a classical constant into a
    /// quantum register.
    ///
    /// # Description
    /// Given the classical constants `c` and `modulus`, and an input
    /// quantum register (as LittleEndian) |𝑦⟩, this operation
    /// computes `(x+c) % modulus` into |𝑦⟩.
    ///
    /// # Input
    /// ## modulus
    /// Modulus to use for modular addition
    /// ## c
    /// Constant to add to |𝑦⟩
    /// ## y
    /// Quantum register of target
    internal operation ModularAddConstant(modulus : Int, c : Int, y : Qubit[])
    : Unit is Adj + Ctl {
        body (...) {
            Controlled ModularAddConstant([], (modulus, c, y));
        }
        controlled (ctrls, ...) {
            // We apply a custom strategy to control this operation instead of
            // letting the compiler create the controlled variant for us in which
            // the `Controlled` functor would be distributed over each operation
            // in the body.
            //
            // Here we can use some scratch memory to save ensure that at most one
            // control qubit is used for costly operations such as `AddConstant`
            // and `CompareGreaterThenOrEqualConstant`.
            if Length(ctrls) >= 2 {
                use control = Qubit();
                within {
                    Controlled X(ctrls, control);
                } apply {
                    Controlled ModularAddConstant([control], (modulus, c, y));
                }
            } else {
                use carry = Qubit();
                Controlled AddConstant(ctrls, (c, y + [carry]));
                Controlled Adjoint AddConstant(ctrls, (modulus, y + [carry]));
                Controlled AddConstant([carry], (modulus, y));
                Controlled CompareGreaterThanOrEqualConstant(ctrls, (c, y, carry));
            }
        }
    }
    
    /// # Summary
    /// Performs in-place addition of a constant into a quantum register.
    ///
    /// # Description
    /// Given a non-empty quantum register |𝑦⟩ of length 𝑛+1 and a positive
    /// constant 𝑐 < 2ⁿ, computes |𝑦 + c⟩ into |𝑦⟩.
    ///
    /// # Input
    /// ## c
    /// Constant number to add to |𝑦⟩.
    /// ## y
    /// Quantum register of second summand and target; must not be empty.
    internal operation AddConstant(c : Int, y : Qubit[]) : Unit is Adj + Ctl {
        // We are using this version instead of the library version that is based
        // on Fourier angles to show an advantage of sparse simulation in this sample.
    
        let n = Length(y);
        Fact(n > 0, "Bit width must be at least 1");
    
        Fact(c >= 0, "constant must not be negative");
        Fact(c < 2 ^ n, $"constant must be smaller than {2L ^ n}");
    
        if c != 0 {
            // If c has j trailing zeroes than the j least significant bits
            // of y will not be affected by the addition and can therefore be
            // ignored by applying the addition only to the other qubits and
            // shifting c accordingly.
            let j = NTrailingZeroes(c);
            use x = Qubit[n - j];
            within {
                ApplyXorInPlace(c >>> j, x);
            } apply {
                IncByLE(x, y[j...]);
            }
        }
    }
    
    /// # Summary
    /// Performs greater-than-or-equals comparison to a constant.
    ///
    /// # Description
    /// Toggles output qubit `target` if and only if input register `x`
    /// is greater than or equal to `c`.
    ///
    /// # Input
    /// ## c
    /// Constant value for comparison.
    /// ## x
    /// Quantum register to compare against.
    /// ## target
    /// Target qubit for comparison result.
    ///
    /// # Reference
    /// This construction is described in [Lemma 3, arXiv:2201.10200]
    internal operation CompareGreaterThanOrEqualConstant(c : Int, x : Qubit[], target : Qubit)
    : Unit is Adj+Ctl {
        let bitWidth = Length(x);
    
        if c == 0 {
            X(target);
        } elif c >= 2 ^ bitWidth {
            // do nothing
        } elif c == 2 ^ (bitWidth - 1) {
            ApplyLowTCNOT(Tail(x), target);
        } else {
            // normalize constant
            let l = NTrailingZeroes(c);
    
            let cNormalized = c >>> l;
            let xNormalized = x[l...];
            let bitWidthNormalized = Length(xNormalized);
            let gates = Rest(IntAsBoolArray(cNormalized, bitWidthNormalized));
    
            use qs = Qubit[bitWidthNormalized - 1];
            let cs1 = [Head(xNormalized)] + Most(qs);
            let cs2 = Rest(xNormalized);
    
            within {
                for i in IndexRange(gates) {
                    (gates[i] ? ApplyAnd | ApplyOr)(cs1[i], cs2[i], qs[i]);
                }
            } apply {
                ApplyLowTCNOT(Tail(qs), target);
            }
        }
    }
    
    /// # Summary
    /// Internal operation used in the implementation of GreaterThanOrEqualConstant.
    internal operation ApplyOr(control1 : Qubit, control2 : Qubit, target : Qubit) : Unit is Adj {
        within {
            ApplyToEachA(X, [control1, control2]);
        } apply {
            ApplyAnd(control1, control2, target);
            X(target);
        }
    }
    
    internal operation ApplyAnd(control1 : Qubit, control2 : Qubit, target : Qubit)
    : Unit is Adj {
        body (...) {
            CCNOT(control1, control2, target);
        }
        adjoint (...) {
            H(target);
            if (M(target) == One) {
                X(target);
                CZ(control1, control2);
            }
        }
    }
    
    
    /// # Summary
    /// Returns the number of trailing zeroes of a number
    ///
    /// ## Example
    /// ```qsharp
    /// let zeroes = NTrailingZeroes(21); // = NTrailingZeroes(0b1101) = 0
    /// let zeroes = NTrailingZeroes(20); // = NTrailingZeroes(0b1100) = 2
    /// ```
    internal function NTrailingZeroes(number : Int) : Int {
        mutable nZeroes = 0;
        mutable copy = number;
        while (copy % 2 == 0) {
            set nZeroes += 1;
            set copy /= 2;
        }
        return nZeroes;
    }
    
    /// # Summary
    /// An implementation for `CNOT` that when controlled using a single control uses
    /// a helper qubit and uses `ApplyAnd` to reduce the T-count to 4 instead of 7.
    internal operation ApplyLowTCNOT(a : Qubit, b : Qubit) : Unit is Adj+Ctl {
        body (...) {
            CNOT(a, b);
        }
    
        adjoint self;
    
        controlled (ctls, ...) {
            // In this application this operation is used in a way that
            // it is controlled by at most one qubit.
            Fact(Length(ctls) <= 1, "At most one control line allowed");
    
            if IsEmpty(ctls) {
                CNOT(a, b);
            } else {
                use q = Qubit();
                within {
                    ApplyAnd(Head(ctls), a, q);
                } apply {
                    CNOT(q, b);
                }
            }
        }
    
        controlled adjoint self;
    }
    

估計 Shor 演算法

現在,使用預設假設來估計 RunProgram 作業的實體資源。 新增儲存格並複製貼上下列程式碼:

result = qsharp.estimate("RunProgram()")
result

qsharp.estimate 函式會建立結果物件,您可以用來顯示具有整體實體資源計數的資料表。 您可以藉由折迭群組來檢查成本詳細資料,這些群組具有詳細資訊。

例如,摺疊 [邏輯量子位元參數] 群組,以查看程式碼距離為 21,而實體量子位元的數目為 882。

邏輯量子位元參數
QEC 配置 surface_code
程式碼距離 21
實際量子位元 882
邏輯週期時間 8 毫秒
邏輯量子位元錯誤率 3.00E-13
交叉前置要素 0.03
錯誤修正臨界值 0.01
邏輯週期時間公式 (4 * twoQubitGateTime + 2 * oneQubitMeasurementTime) * codeDistance
實體量子位元公式 2 * codeDistance * codeDistance

提示

如需更精簡的輸出資料表版本,您可以使用 result.summary

空間圖

演算法和 T Factory 所使用的實體量子位元分佈是可能會影響演算法設計的因素。 您可以使用 qsharp-widgets 套件將此分佈視覺化,以進一步了解演算法的估計空間需求。

from qsharp_widgets import SpaceChart
SpaceChart(result)

在此範例中,執行演算法所需的實體量子位元數目 829766,其中 196686 為演算法量子位元,而其中 633080 為 T Factory 量子位元。

顯示資源估算器空間圖的螢幕擷取畫面。

比較不同量子位元技術的資源估計值

Azure Quantum 資源估算器可讓您執行多個目標參數的組態,並比較結果。 當您想要比較不同量子位元模型、QEC 配置或錯誤預算的成本時,這會很有用。

您也可以使用 EstimatorParams 物件來建構估計參數的清單。

from qsharp.estimator import EstimatorParams, QubitParams, QECScheme, LogicalCounts

labels = ["Gate-based µs, 10⁻³", "Gate-based µs, 10⁻⁴", "Gate-based ns, 10⁻³", "Gate-based ns, 10⁻⁴", "Majorana ns, 10⁻⁴", "Majorana ns, 10⁻⁶"]

params = EstimatorParams(6)
params.error_budget = 0.333
params.items[0].qubit_params.name = QubitParams.GATE_US_E3
params.items[1].qubit_params.name = QubitParams.GATE_US_E4
params.items[2].qubit_params.name = QubitParams.GATE_NS_E3
params.items[3].qubit_params.name = QubitParams.GATE_NS_E4
params.items[4].qubit_params.name = QubitParams.MAJ_NS_E4
params.items[4].qec_scheme.name = QECScheme.FLOQUET_CODE
params.items[5].qubit_params.name = QubitParams.MAJ_NS_E6
params.items[5].qec_scheme.name = QECScheme.FLOQUET_CODE

qsharp.estimate("RunProgram()", params=params).summary_data_frame(labels=labels)
量子位元模型 邏輯量子位元 邏輯深度 T 狀態 程式碼距離 T Factory T Factory 分數 實際量子位元 rQOPS 實際執行時間
閘道型 µs, 10⁻³ 223 3.64M 4.70M 17 13 40.54 % 216.77k 21.86k 10 個小時
閘道型 µs, 10⁻⁴ 223 3.64M 4.70M 9 14 43.17 % 63.57k 41.30k 5 個小時
閘道型 ns, 10⁻³ 223 3.64M 4.70M 17 16 69.08 % 416.89k 32.79M 25 secs
閘道型 ns, 10⁻⁴ 223 3.64M 4.70M 9 14 43.17 % 63.57k 61.94M 13 secs
Majorana ns, 10⁻⁴ 223 3.64M 4.70M 9 19 82.75 % 501.48k 82.59M 10 secs
Majorana ns, 10⁻⁶ 223 3.64M 4.70M 5 13 31.47 % 42.96k 148.67M 5 secs

從邏輯資源計數擷取資源估計值

如果您已經知道作業的部分估計值,資源估算器可讓您將已知的估計值納入整體程式成本,以減少執行時間。 您可以使用 LogicalCounts 類別,從預先計算的資源估計值中擷取邏輯資源估計值。

選取 [程式碼] 以新增儲存格,然後輸入並執行下列程式碼:

logical_counts = LogicalCounts({
    'numQubits': 12581,
    'tCount': 12,
    'rotationCount': 12,
    'rotationDepth': 12,
    'cczCount': 3731607428,
    'measurementCount': 1078154040})

logical_counts.estimate(params).summary_data_frame(labels=labels)
量子位元模型 邏輯量子位元 邏輯深度 T 狀態 程式碼距離 T Factory T Factory 分數 實際量子位元 實際執行時間
閘道型 µs, 10⁻³ 25481 1.2e+10 1.5e+10 27 13 0.6% 37.38M 6 年
閘道型 µs, 10⁻⁴ 25481 1.2e+10 1.5e+10 13 14 0.8% 8.68M 3 年
閘道型 ns, 10⁻³ 25481 1.2e+10 1.5e+10 27 15 1.3% 37.65M 2 天
閘道型 ns, 10⁻⁴ 25481 1.2e+10 1.5e+10 13 18 1.2% 8.72M 18 小時
Majorana ns, 10⁻⁴ 25481 1.2e+10 1.5e+10 15 15 1.3% 26.11M 15 小時
Majorana ns, 10⁻⁶ 25481 1.2e+10 1.5e+10 7 13 0.5% 6.25M 7 小時

推論

在最不理想的案例中,使用閘道型 µs 量子位元 (在奈秒制中具有作業時間的量子位元,例如超導量子位元) 與表面 QEC 程式碼的量子電腦,需要 6 年和 37.38M 個量子位元,才能使用 Shor 的演算法來分解 2,048 位元整數。

如果您使用不同的量子位元技術,例如閘道型 ns 離子量子位元及相同的表面碼,則量子位元的數目不會變更太多,但執行時間在最不理想的情況下會變成 2 天,而理想的案例中為 18 小時。 例如,如果您使用 Majorana 型量子位元變更量子位元技術和 QEC 程式碼,則使用 Shor 演算法來分解 2,048 位元整數時,可以在最佳案例中以 6.25M 個量子位元的陣列來完成。

從實驗中,您可以判斷使用 Majorana 量子位元和 Floquet QEC 程式碼是執行 Shor 演算法及分解 2,048 位元整數的最佳選擇。