編輯

共用方式為


適用於 Python 的 Azure Data Lake Analytics 程式庫Azure Data Lake Analytics libraries for python

概觀Overview

使用 Azure Data Lake Analytics 來執行擴充至大規模資料集的巨量資料分析作業。Run big data analysis jobs that scale to massive data sets with Azure Data Lake Analytics.

安裝程式庫Install the libraries

管理 APIManagement API

使用管理 API 來管理 Data Lake Analytics 帳戶、作業、原則和目錄。Use the management API to manage Data Lake Analytics accounts, jobs, policies, and catalogs.

pip install azure-mgmt-datalake-analytics

範例Example

這個範例說明如何建立 Data Lake Analytics 帳戶並提交作業。This is an example of how to create a Data Lake Analytics account and submit a job.

## Required for Azure Resource Manager
from azure.mgmt.resource.resources import ResourceManagementClient
from azure.mgmt.resource.resources.models import ResourceGroup

## Required for Azure Data Lake Store account management
from azure.mgmt.datalake.store import DataLakeStoreAccountManagementClient
from azure.mgmt.datalake.store.models import DataLakeStoreAccount

## Required for Azure Data Lake Store filesystem management
from azure.datalake.store import core, lib, multithread

## Required for Azure Data Lake Analytics account management
from azure.mgmt.datalake.analytics.account import DataLakeAnalyticsAccountManagementClient
from azure.mgmt.datalake.analytics.account.models import DataLakeAnalyticsAccount, DataLakeStoreAccountInfo

## Required for Azure Data Lake Analytics job management
from azure.mgmt.datalake.analytics.job import DataLakeAnalyticsJobManagementClient
from azure.mgmt.datalake.analytics.job.models import JobInformation, JobState, USqlJobProperties

subid= '<Azure Subscription ID>'
rg = '<Azure Resource Group Name>'
location = '<Location>' # i.e. 'eastus2'
adls = '<Azure Data Lake Store Account Name>'
adls = '<Azure Data Lake Analytics Account Name>'

# Create the clients
resourceClient = ResourceManagementClient(credentials, subid)
adlaAcctClient = DataLakeAnalyticsAccountManagementClient(credentials, subid)
adlaJobClient = DataLakeAnalyticsJobManagementClient( credentials, 'azuredatalakeanalytics.net')

# Create resource group
armGroupResult = resourceClient.resource_groups.create_or_update(rg, ResourceGroup(location=location))

# Create a store account
adlaAcctResult = adlaAcctClient.account.create(
    rg,
    adla,
    DataLakeAnalyticsAccount(
        location=location,
        default_data_lake_store_account=adls,
        data_lake_store_accounts=[DataLakeStoreAccountInfo(name=adls)]
    )
).wait()

# Create an ADLA account
adlaAcctResult = adlaAcctClient.account.create(
    rg,
    adla,
    DataLakeAnalyticsAccount(
        location=location,
        default_data_lake_store_account=adls,
        data_lake_store_accounts=[DataLakeStoreAccountInfo(name=adls)]
    )
).wait()

# Submit a job
script = """
@a  = 
    SELECT * FROM 
        (VALUES
            ("Contoso", 1500.0),
            ("Woodgrove", 2700.0)
        ) AS 
              D( customer, amount );
OUTPUT @a
    TO "/data.csv"
    USING Outputters.Csv();
"""

jobId = str(uuid.uuid4())
jobResult = adlaJobClient.job.create(
    adla,
    jobId,
    JobInformation(
        name='Sample Job',
        type='USql',
        properties=USqlJobProperties(script=script)
    )
)

範例Samples

管理 Azure Data Lake AnyalyticsManage Azure Data Lake Anyalytics