共用方式為


HOW TO:撰寫 parallel_for 迴圈

本範例將示範如何使用 concurrency::parallel_for 來計算兩個矩陣的乘積。

範例

下列範例顯示了 matrix_multiply 函式,它會計算兩個平方矩陣的乘積。

// Computes the product of two square matrices.
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
   for (size_t i = 0; i < size; i++) 
   {
      for (size_t j = 0; j < size; j++)
      {
         double temp = 0;
         for (int k = 0; k < size; k++)
         {
            temp += m1[i][k] * m2[k][j];
         }
         result[i][j] = temp;
      }
   }
}

下列範例顯示了 parallel_matrix_multiply 函式,它會使用 parallel_for 演算法,以平行方式執行外部迴圈。

// Computes the product of two square matrices in parallel.
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
   parallel_for (size_t(0), size, [&](size_t i)
   {
      for (size_t j = 0; j < size; j++)
      {
         double temp = 0;
         for (int k = 0; k < size; k++)
         {
            temp += m1[i][k] * m2[k][j];
         }
         result[i][j] = temp;
      }
   });
}

這個範例只會平行處理外部迴圈,因為它會執行足夠的工作,以便從平行處理的額外負荷中獲益。如果您平行處理內部迴圈,就無法提升效能,因為內部迴圈所執行的少量工作不會克服平行處理的額外負荷。因此,在大部分的系統上,僅平行處理外部迴圈是充分發揮並行優勢的最佳途徑。

下列更完整的範例會比較 matrix_multiply 函式與 parallel_matrix_multiply 函式之間的效能差異。

// parallel-matrix-multiply.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <iostream>
#include <random>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds 
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
   __int64 begin = GetTickCount();
   f();
   return GetTickCount() - begin;
}

// Creates a square matrix with the given number of rows and columns.
double** create_matrix(size_t size);

// Frees the memory that was allocated for the given square matrix.
void destroy_matrix(double** m, size_t size);

// Initializes the given square matrix with values that are generated
// by the given generator function.
template <class Generator>
double** initialize_matrix(double** m, size_t size, Generator& gen);

// Computes the product of two square matrices.
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
   for (size_t i = 0; i < size; i++) 
   {
      for (size_t j = 0; j < size; j++)
      {
         double temp = 0;
         for (int k = 0; k < size; k++)
         {
            temp += m1[i][k] * m2[k][j];
         }
         result[i][j] = temp;
      }
   }
}

// Computes the product of two square matrices in parallel.
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
   parallel_for (size_t(0), size, [&](size_t i)
   {
      for (size_t j = 0; j < size; j++)
      {
         double temp = 0;
         for (int k = 0; k < size; k++)
         {
            temp += m1[i][k] * m2[k][j];
         }
         result[i][j] = temp;
      }
   });
}

int wmain()
{
   // The number of rows and columns in each matrix.
   // TODO: Change this value to experiment with serial 
   // versus parallel performance. 
   const size_t size = 750;

   // Create a random number generator.
   mt19937 gen(42);

   // Create and initialize the input matrices and the matrix that
   // holds the result.
   double** m1 = initialize_matrix(create_matrix(size), size, gen);
   double** m2 = initialize_matrix(create_matrix(size), size, gen);
   double** result = create_matrix(size);

   // Print to the console the time it takes to multiply the 
   // matrices serially.
   wcout << L"serial: " << time_call([&] {
      matrix_multiply(m1, m2, result, size);
   }) << endl;

   // Print to the console the time it takes to multiply the 
   // matrices in parallel.
   wcout << L"parallel: " << time_call([&] {
      parallel_matrix_multiply(m1, m2, result, size);
   }) << endl;

   // Free the memory that was allocated for the matrices.
   destroy_matrix(m1, size);
   destroy_matrix(m2, size);
   destroy_matrix(result, size);
}

// Creates a square matrix with the given number of rows and columns.
double** create_matrix(size_t size)
{
   double** m = new double*[size];
   for (size_t i = 0; i < size; ++i)
   {
      m[i] = new double[size];
   }
   return m;
}

// Frees the memory that was allocated for the given square matrix.
void destroy_matrix(double** m, size_t size)
{
   for (size_t i = 0; i < size; ++i)
   {
      delete[] m[i];
   }
   delete m;
}

// Initializes the given square matrix with values that are generated
// by the given generator function.
template <class Generator>
double** initialize_matrix(double** m, size_t size, Generator& gen)
{
   for (size_t i = 0; i < size; ++i)
   {
      for (size_t j = 0; j < size; ++j)
      {
         m[i][j] = static_cast<double>(gen());
      }
   }
   return m;
}

下列是針對配備四個處理器之電腦的範例輸出。

serial: 3853
parallel: 1311

編譯程式碼

若要編譯的程式碼,將它複製然後將它貼在 Visual Studio 專案中,或將它貼在檔名為平行-矩陣-multiply.cpp ,然後執行下列命令,Visual Studio 的命令提示字元] 視窗中。

cl.exe /EHsc parallel-matrix-multiply.cpp

請參閱

參考

parallel_for 函式

概念

平行演算法