cosh
傳回複雜數值的雙曲線餘弦函數。
template<class Type>
complex<Type> cosh(
const complex<Type>& _ComplexNum
);
參數
- _ComplexNum
的雙曲線餘弦函數來決定的複數。
傳回值
是輸入複數的雙曲線餘弦函數的複數。
備註
定義複雜的雙曲線餘弦函數的識別:
Cos (z) (= 1/2) * (deleteexp- (z) 也不用 (+ -z))
Cos (z) =短棒 (+ double) = () 短棒 cos (B) + isinh (A) Sin (B)
範例
// complex_cosh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of cosine of a complex number c1
complex <double> c2 = cosh ( c1 );
cout << "Complex number c2 = cosh ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic cosines of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar (1.0, pi / 6) );
v1.push_back( cosh ( vc1 ) );
complex <double> vc2 ( polar (1.0, pi / 3) );
v1.push_back( cosh ( vc2 ) );
complex <double> vc3 ( polar (1.0, pi / 2) );
v1.push_back( cosh ( vc3) );
complex <double> vc4 ( polar (1.0, 2 * pi / 3) );
v1.push_back( cosh ( vc4 ) );
complex <double> vc5 ( polar (1.0, 5 * pi / 6) );
v1.push_back( cosh ( vc5 ) );
complex <double> vc6 ( polar (1.0, pi ) );
v1.push_back( cosh ( vc6 ) );
cout << "The complex components cosh (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
需求
標題: <complex>
命名空間: std