poisson_distribution 類別
產生波氏 (Poisson) 分佈。
template<class IntType = int> class poisson_distribution { public: // types typedef IntType result_type; struct param_type; // constructors and reset functions explicit poisson_distribution(double mean = 1.0); explicit poisson_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& gen); template<class URNG> result_type operator()(URNG& gen, const param_type& parm); // property functions double mean() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
參數
- IntType
整數結果類型,預設值為 int。 關於可能的類型,請參閱 <random>。
備註
此範例類別描述使用波氏分佈產生使用者指定之整數類型的值。 下表提供各個成員的文章連結。
poisson_distribution::mean |
poisson_distribution::param |
|
poisson_distribution::operator() |
屬性函式 mean() 會傳回儲存的分佈參數 mean 的值。
如需分佈類別及其成員的詳細資訊,請參閱 <random>。
如需波氏分佈的詳細資訊,請參閱 Wolfram MathWorld 文章波氏分佈 (英文)。
範例
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const double p, const int s) {
// uncomment to use a non-deterministic generator
// std::random_device gen;
std::mt19937 gen(1701);
std::poisson_distribution<> distr(p);
std::cout << std::endl;
std::cout << "min() == " << distr.min() << std::endl;
std::cout << "max() == " << distr.max() << std::endl;
std::cout << "p() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.mean() << std::endl;
// generate the distribution as a histogram
std::map<int, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
for (const auto& elem : histogram) {
std::cout << std::setw(5) << elem.first << ' ' << std::string(elem.second, ':') << std::endl;
}
std::cout << std::endl;
}
int main()
{
double p_dist = 1.0;
int samples = 100;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter a floating point value for the 'mean' distribution parameter (must be greater than zero): ";
std::cin >> p_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(p_dist, samples);
}
輸出
第一個測試:
第二個測試:
需求
標頭:<random>
命名空間: std