norm
擷取一個複數的準則。
template<class Type>
Type norm(
const complex<Type>& _ComplexNum
);
參數
- _ComplexNum
要判斷準則的複數。
傳回值
複雜數值的準則。
備註
複雜數值的準則 、+按 是 ( +2b)2。複雜數值的準則是它的模數方形。 複雜數值的模數是向量長度的測量表示複數的。 複雜數值的模數 。 是+按兩sqrt(a2 、b)2, 則 |按+。|.
範例
// complex_norm.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Complex numbers can be entered in polar form with
// modulus and argument parameter inputs but are
// stored in Cartesian form as real & imag coordinates
complex <double> c1 ( polar ( 5.0 ) ); // Default argument = 0
complex <double> c2 ( polar ( 5.0 , pi / 6 ) );
complex <double> c3 ( polar ( 5.0 , 13 * pi / 6 ) );
cout << "c1 = polar ( 5.0 ) = " << c1 << endl;
cout << "c2 = polar ( 5.0 , pi / 6 ) = " << c2 << endl;
cout << "c3 = polar ( 5.0 , 13 * pi / 6 ) = " << c3 << endl;
if ( (arg ( c2 ) <= ( arg ( c3 ) + .00000001) ) ||
(arg ( c2 ) >= ( arg ( c3 ) - .00000001) ) )
cout << "The complex numbers c2 & c3 have the "
<< "same principal arguments."<< endl;
else
cout << "The complex numbers c2 & c3 don't have the "
<< "same principal arguments." << endl;
// The modulus and argument of a complex number can be recovered
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is recovered from c2 using: abs ( c2 ) = "
<< absc2 << endl;
cout << "Argument of c2 is recovered from c2 using:\n arg ( c2 ) = "
<< argc2 << " radians, which is " << argc2 * 180 / pi
<< " degrees." << endl;
// The norm of a complex number is the square of its modulus
double normc2 = norm ( c2 );
double sqrtnormc2 = sqrt ( normc2 );
cout << "The norm of c2 given by: norm ( c2 ) = " << normc2 << endl;
cout << "The modulus of c2 is the square root of the norm: "
<< "sqrt ( normc2 ) = " << sqrtnormc2 << ".";
}
需求
標題: <complex>
命名空間: std