TreeExtensions.FeaturizeByPretrainTreeEnsemble 方法
定義
重要
部分資訊涉及發行前產品,在發行之前可能會有大幅修改。 Microsoft 對此處提供的資訊,不做任何明確或隱含的瑕疵擔保。
建立 PretrainedTreeFeaturizationEstimator ,其會產生給定的 TreeEnsembleModelParameters 樹狀結構特徵。
public static Microsoft.ML.Trainers.FastTree.PretrainedTreeFeaturizationEstimator FeaturizeByPretrainTreeEnsemble (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.Trainers.FastTree.PretrainedTreeFeaturizationEstimator.Options options);
static member FeaturizeByPretrainTreeEnsemble : Microsoft.ML.TransformsCatalog * Microsoft.ML.Trainers.FastTree.PretrainedTreeFeaturizationEstimator.Options -> Microsoft.ML.Trainers.FastTree.PretrainedTreeFeaturizationEstimator
<Extension()>
Public Function FeaturizeByPretrainTreeEnsemble (catalog As TransformsCatalog, options As PretrainedTreeFeaturizationEstimator.Options) As PretrainedTreeFeaturizationEstimator
參數
- catalog
- TransformsCatalog
要建立 PretrainedTreeFeaturizationEstimator 的內容 TransformsCatalog 。
設定 PretrainedTreeFeaturizationEstimator 的選項。 如需可用的設定,請參閱 PretrainedTreeFeaturizationEstimator.Options 和 TreeEnsembleFeaturizationEstimatorBase.OptionsBase 。
傳回
範例
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers.FastTree;
namespace Samples.Dynamic.Transforms.TreeFeaturization
{
public static class PretrainedTreeEnsembleFeaturizationWithOptions
{
public static void Example()
{
// Create data set
int dataPointCount = 200;
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(dataPointCount).ToList();
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var dataView = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define input and output columns of tree-based featurizer.
string labelColumnName = nameof(DataPoint.Label);
string featureColumnName = nameof(DataPoint.Features);
string treesColumnName = nameof(TransformedDataPoint.Trees);
string leavesColumnName = nameof(TransformedDataPoint.Leaves);
string pathsColumnName = nameof(TransformedDataPoint.Paths);
// Define a tree model whose trees will be extracted to construct a tree
// featurizer.
var trainer = mlContext.BinaryClassification.Trainers.FastTree(
new FastTreeBinaryTrainer.Options
{
NumberOfThreads = 1,
NumberOfTrees = 1,
NumberOfLeaves = 4,
MinimumExampleCountPerLeaf = 1,
FeatureColumnName = featureColumnName,
LabelColumnName = labelColumnName
});
// Train the defined tree model.
var model = trainer.Fit(dataView);
var predicted = model.Transform(dataView);
// Define the configuration of tree-based featurizer.
var options = new PretrainedTreeFeaturizationEstimator.Options()
{
InputColumnName = featureColumnName,
ModelParameters = model.Model.SubModel, // Pretrained tree model.
TreesColumnName = treesColumnName,
LeavesColumnName = leavesColumnName,
PathsColumnName = pathsColumnName
};
// Fit the created featurizer. It doesn't perform actual training
// because a pretrained model is provided.
var treeFeaturizer = mlContext.Transforms
.FeaturizeByPretrainTreeEnsemble(options).Fit(dataView);
// Apply TreeEnsembleFeaturizer to the input data.
var transformed = treeFeaturizer.Transform(dataView);
// Convert IDataView object to a list. Each element in the resulted list
// corresponds to a row in the IDataView.
var transformedDataPoints = mlContext.Data.CreateEnumerable<
TransformedDataPoint>(transformed, false).ToList();
// Print out the transformation of the first 3 data points.
for (int i = 0; i < 3; ++i)
{
var dataPoint = dataPoints[i];
var transformedDataPoint = transformedDataPoints[i];
Console.WriteLine("The original feature vector [" + String.Join(
",", dataPoint.Features) + "] is transformed to three " +
"different tree-based feature vectors:");
Console.WriteLine(" Trees' output values: [" + String.Join(",",
transformedDataPoint.Trees) + "].");
Console.WriteLine(" Leave IDs' 0-1 representation: [" + String
.Join(",", transformedDataPoint.Leaves) + "].");
Console.WriteLine(" Paths IDs' 0-1 representation: [" + String
.Join(",", transformedDataPoint.Paths) + "].");
}
// Expected output:
// The original feature vector[0.8173254, 0.7680227, 0.5581612] is
// transformed to three different tree - based feature vectors:
// Trees' output values: [0.4172185].
// Leave IDs' 0-1 representation: [1,0,0,0].
// Paths IDs' 0-1 representation: [1,1,1].
// The original feature vector[0.7588848, 1.106027, 0.6421779] is
// transformed to three different tree - based feature vectors:
// Trees' output values: [-1].
// Leave IDs' 0-1 representation: [0,0,1,0].
// Paths IDs' 0-1 representation: [1,1,0].
// The original feature vector[0.2737045, 0.2919063, 0.4673147] is
// transformed to three different tree - based feature vectors:
// Trees' output values: [0.4172185].
// Leave IDs' 0-1 representation: [1,0,0,0].
// Paths IDs' 0-1 representation: [1,1,1].
//
// Note that the trained model contains only one tree.
//
// Node 0
// / \
// / Leaf -2
// Node 1
// / \
// / Leaf -3
// Node 2
// / \
// / Leaf -4
// Leaf -1
//
// Thus, if a data point reaches Leaf indexed by -1, its 0-1 path
// representation may be [1,1,1] because that data point
// went through all Node 0, Node 1, and Node 2.
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 3).Select(x => x ?
randomFloat() : randomFloat() + 0.2f).ToArray()
};
}
}
// Example with label and 3 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(3)]
public float[] Features { get; set; }
}
// Class used to capture the output of tree-base featurization.
private class TransformedDataPoint : DataPoint
{
// The i-th value is the output value of the i-th decision tree.
public float[] Trees { get; set; }
// The 0-1 encoding of leaves the input feature vector falls into.
public float[] Leaves { get; set; }
// The 0-1 encoding of paths the input feature vector reaches the
// leaves.
public float[] Paths { get; set; }
}
}
}