ComputeLogisticRegressionStandardDeviation.ComputeStandardDeviation 方法
定義
重要
部分資訊涉及發行前產品,在發行之前可能會有大幅修改。 Microsoft 對此處提供的資訊,不做任何明確或隱含的瑕疵擔保。
計算每個非零定型權數的標準差矩陣,以進一步計算標準差、p 值和 z-Score。 計算不是 Microsoft.ML 套件的一部分,因為 MKL 的大小。 如果您需要這些計算,請新增 Microsoft.ML.Mkl.Components 套件,並將 初始化 ComputeStandardDeviation 至 ComputeLogisticRegressionStandardDeviation Microsoft.ML.Mkl.Components 套件中的實作。 由於正規化存在,因此會使用近似值來計算定型線性係數的變異數。
public abstract Microsoft.ML.Data.VBuffer<float> ComputeStandardDeviation (double[] hessian, int[] weightIndices, int parametersCount, int currentWeightsCount, Microsoft.ML.Runtime.IChannel ch, float l2Weight);
abstract member ComputeStandardDeviation : double[] * int[] * int * int * Microsoft.ML.Runtime.IChannel * single -> Microsoft.ML.Data.VBuffer<single>
Public MustOverride Function ComputeStandardDeviation (hessian As Double(), weightIndices As Integer(), parametersCount As Integer, currentWeightsCount As Integer, ch As IChannel, l2Weight As Single) As VBuffer(Of Single)
參數
- hessian
- Double[]
- weightIndices
- Int32[]
- parametersCount
- Int32
- currentWeightsCount
- Int32
- ch
- IChannel
- l2Weight
- Single