RecommendationCatalog.CrossValidate 方法
定義
重要
部分資訊涉及發行前產品,在發行之前可能會有大幅修改。 Microsoft 對此處提供的資訊,不做任何明確或隱含的瑕疵擔保。
在 的折迭上 numberOfFolds
執行交叉驗證,方法是調整 estimator
,並在提供時遵守 samplingKeyColumnName
。 data
然後根據 labelColumnName
評估每個子模型,並傳回計量。
public System.Collections.Generic.IReadOnlyList<Microsoft.ML.TrainCatalogBase.CrossValidationResult<Microsoft.ML.Data.RegressionMetrics>> CrossValidate(Microsoft.ML.IDataView data, Microsoft.ML.IEstimator<Microsoft.ML.ITransformer> estimator, int numberOfFolds = 5, string labelColumnName = "Label", string samplingKeyColumnName = default, int? seed = default);
member this.CrossValidate : Microsoft.ML.IDataView * Microsoft.ML.IEstimator<Microsoft.ML.ITransformer> * int * string * string * Nullable<int> -> System.Collections.Generic.IReadOnlyList<Microsoft.ML.TrainCatalogBase.CrossValidationResult<Microsoft.ML.Data.RegressionMetrics>>
Public Function CrossValidate (data As IDataView, estimator As IEstimator(Of ITransformer), Optional numberOfFolds As Integer = 5, Optional labelColumnName As String = "Label", Optional samplingKeyColumnName As String = Nothing, Optional seed As Nullable(Of Integer) = Nothing) As IReadOnlyList(Of TrainCatalogBase.CrossValidationResult(Of RegressionMetrics))
參數
- data
- IDataView
要執行交叉驗證的資料。
- estimator
- IEstimator<ITransformer>
要符合的估算器。
- numberOfFolds
- Int32
交叉驗證折迭的數目。
- labelColumnName
- String
用於評估) 的標籤資料行 (。
- samplingKeyColumnName
- String
要當做分層資料行使用之資料行的選擇性名稱。 如果兩個範例在提供) 時共用相同的 (值 samplingKeyColumnName
,則保證它們會出現在相同的子集 (定型或測試) 。 使用此選項可確保不會將標籤從定型外泄至測試集。
如果未提供這個選擇性參數,則會產生分層資料行,而其值將會是亂數 。
搭配 使用選擇性參數。 samplingKeyColumnName
samplingKeyColumnName
如果未提供 ,則產生的亂數字會使用此種子做為值。
如果未提供,則會使用預設值。
傳回
個別折迭結果:計量、模型、評分資料集。