共用方式為


MklComponentsCatalog.SymbolicSgdLogisticRegression 方法

定義

多載

SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, SymbolicSgdLogisticRegressionBinaryTrainer+Options)

使用 SymbolicSgdLogisticRegressionBinaryTrainer 進階選項建立 ,其會使用透過布林標籤資料定型的線性二元分類模型來預測目標。 隨機梯度下降 (SGD) 是一種反復演算法,可將可區分的目標函式優化。 會 SymbolicSgdLogisticRegressionBinaryTrainer 使用 符號執行來平行處理 SGD。

SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, Int32)

建立 SymbolicSgdLogisticRegressionBinaryTrainer ,其會使用透過布林標籤資料定型的線性二元分類模型來預測目標。 隨機梯度下降 (SGD) 是一種反復演算法,可將可區分的目標函式優化。 會 SymbolicSgdLogisticRegressionBinaryTrainer 使用 符號執行來平行處理 SGD。

SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, SymbolicSgdLogisticRegressionBinaryTrainer+Options)

使用 SymbolicSgdLogisticRegressionBinaryTrainer 進階選項建立 ,其會使用透過布林標籤資料定型的線性二元分類模型來預測目標。 隨機梯度下降 (SGD) 是一種反復演算法,可將可區分的目標函式優化。 會 SymbolicSgdLogisticRegressionBinaryTrainer 使用 符號執行來平行處理 SGD。

public static Microsoft.ML.Trainers.SymbolicSgdLogisticRegressionBinaryTrainer SymbolicSgdLogisticRegression (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.SymbolicSgdLogisticRegressionBinaryTrainer.Options options);
static member SymbolicSgdLogisticRegression : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.SymbolicSgdLogisticRegressionBinaryTrainer.Options -> Microsoft.ML.Trainers.SymbolicSgdLogisticRegressionBinaryTrainer
<Extension()>
Public Function SymbolicSgdLogisticRegression (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As SymbolicSgdLogisticRegressionBinaryTrainer.Options) As SymbolicSgdLogisticRegressionBinaryTrainer

參數

傳回

範例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class SymbolicSgdLogisticRegressionWithOptions
    {
        // This example requires installation of additional NuGet package for 
        // Microsoft.ML.FastTree at
        // https://www.nuget.org/packages/Microsoft.ML.FastTree/
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new SymbolicSgdLogisticRegressionBinaryTrainer.Options()
            {
                LearningRate = 0.2f,
                NumberOfIterations = 10,
                NumberOfThreads = 1,
            };

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .SymbolicSgdLogisticRegression(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: False
            //   Label: False, Prediction: False
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.72
            //   AUC: 0.81
            //   F1 Score: 0.66
            //   Negative Precision: 0.68
            //   Negative Recall: 0.87
            //   Positive Precision: 0.80
            //   Positive Recall: 0.56
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      133 |      105 | 0.5588
            //    negative ||       34 |      228 | 0.8702
            //             ||======================
            //   Precision ||   0.7964 |   0.6847 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

適用於

SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, Int32)

建立 SymbolicSgdLogisticRegressionBinaryTrainer ,其會使用透過布林標籤資料定型的線性二元分類模型來預測目標。 隨機梯度下降 (SGD) 是一種反復演算法,可將可區分的目標函式優化。 會 SymbolicSgdLogisticRegressionBinaryTrainer 使用 符號執行來平行處理 SGD。

public static Microsoft.ML.Trainers.SymbolicSgdLogisticRegressionBinaryTrainer SymbolicSgdLogisticRegression (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", int numberOfIterations = 50);
static member SymbolicSgdLogisticRegression : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * int -> Microsoft.ML.Trainers.SymbolicSgdLogisticRegressionBinaryTrainer
<Extension()>
Public Function SymbolicSgdLogisticRegression (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional numberOfIterations As Integer = 50) As SymbolicSgdLogisticRegressionBinaryTrainer

參數

labelColumnName
String

標籤資料行的名稱。 資料行資料必須是 Boolean

featureColumnName
String

功能資料行的名稱。 資料行資料必須是 的 Single 已知大小向量。

numberOfIterations
Int32

定型反覆運算的次數。

傳回

範例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class SymbolicSgdLogisticRegression
    {
        // This example requires installation of additional NuGet package for 
        // Microsoft.ML.FastTree at
        // https://www.nuget.org/packages/Microsoft.ML.FastTree/
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .SymbolicSgdLogisticRegression();

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: False
            //   Label: False, Prediction: False
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: True

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.69
            //   AUC: 0.76
            //   F1 Score: 0.68
            //   Negative Precision: 0.72
            //   Negative Recall: 0.66
            //   Positive Precision: 0.66
            //   Positive Recall: 0.71
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      196 |       42 | 0.8235
            //    negative ||       42 |      220 | 0.8397
            //             ||======================
            //   Precision ||   0.8235 |   0.8397 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

適用於