共用方式為


ImageEstimatorsCatalog.ConvertToGrayscale 方法

定義

建立 ImageGrayscalingEstimator ,其會將 中指定的 InputColumnName 資料行中的影像轉換成新資料行中的灰階影像: OutputColumnName

public static Microsoft.ML.Transforms.Image.ImageGrayscalingEstimator ConvertToGrayscale (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default);
static member ConvertToGrayscale : Microsoft.ML.TransformsCatalog * string * string -> Microsoft.ML.Transforms.Image.ImageGrayscalingEstimator
<Extension()>
Public Function ConvertToGrayscale (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing) As ImageGrayscalingEstimator

參數

catalog
TransformsCatalog

轉換的目錄。

outputColumnName
String

轉換所產生的 inputColumnName 資料行名稱。 此資料行的資料類型會與輸入資料行的資料類型相同。

inputColumnName
String

要從中將影像轉換成灰階的資料行名稱。 此估算器只會在 上 MLImage 運作。

傳回

範例

using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class ConvertToGrayscale
    {
        // Sample that loads images from the file system, and converts them to
        // grayscale.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Downloading a few images, and an images.tsv file, which contains a
            // list of the files from the dotnet/machinelearning/test/data/images/.
            // If you inspect the fileSystem, after running this line, an "images"
            // folder will be created, containing 4 images, and a .tsv file
            // enumerating the images.
            var imagesDataFile = Microsoft.ML.SamplesUtils.DatasetUtils
                .GetSampleImages();

            // Preview of the content of the images.tsv file
            //
            // imagePath    imageType
            // tomato.bmp   tomato
            // banana.jpg   banana
            // hotdog.jpg   hotdog
            // tomato.jpg   tomato

            var data = mlContext.Data.CreateTextLoader(new TextLoader.Options()
            {
                Columns = new[]
                {
                        new TextLoader.Column("ImagePath", DataKind.String, 0),
                        new TextLoader.Column("Name", DataKind.String, 1),
                 }
            }).Load(imagesDataFile);

            var imagesFolder = Path.GetDirectoryName(imagesDataFile);
            // Image loading pipeline.
            var pipeline = mlContext.Transforms.LoadImages("ImageObject",
                imagesFolder, "ImagePath")
                .Append(mlContext.Transforms.ConvertToGrayscale("Grayscale",
                "ImageObject"));

            var transformedData = pipeline.Fit(data).Transform(data);

            PrintColumns(transformedData);
            // ImagePath    Name         ImageObject              Grayscale
            // tomato.bmp   tomato       {Width=800, Height=534}  {Width=800, Height=534}
            // banana.jpg   banana       {Width=800, Height=288}  {Width=800, Height=288}
            // hotdog.jpg   hotdog       {Width=800, Height=391}  {Width=800, Height=391}
            // tomato.jpg   tomato       {Width=800, Height=534}  {Width=800, Height=534}
        }

        private static void PrintColumns(IDataView transformedData)
        {
            Console.WriteLine("{0, -25} {1, -25} {2, -25} {3, -25}", "ImagePath",
                "Name", "ImageObject", "Grayscale");

            using (var cursor = transformedData.GetRowCursor(transformedData
                .Schema))
            {
                // Note that it is best to get the getters and values *before*
                // iteration, so as to facilitate buffer sharing (if applicable), and
                // column -type validation once, rather than many times.
                ReadOnlyMemory<char> imagePath = default;
                ReadOnlyMemory<char> name = default;
                MLImage imageObject = null;
                MLImage grayscaleImageObject = null;

                var imagePathGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
                    .Schema["ImagePath"]);

                var nameGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
                    .Schema["Name"]);

                var imageObjectGetter = cursor.GetGetter<MLImage>(cursor.Schema[
                    "ImageObject"]);

                var grayscaleGetter = cursor.GetGetter<MLImage>(cursor.Schema[
                    "Grayscale"]);

                while (cursor.MoveNext())
                {
                    imagePathGetter(ref imagePath);
                    nameGetter(ref name);
                    imageObjectGetter(ref imageObject);
                    grayscaleGetter(ref grayscaleImageObject);

                    Console.WriteLine("{0, -25} {1, -25} {2, -25} {3, -25}",
                        imagePath, name, $"Width={imageObject.Width}, Height={imageObject.Height}",
                        $"Width={grayscaleImageObject.Width}, Height={grayscaleImageObject.Height}");
                }

                // Dispose the image.
                imageObject.Dispose();
                grayscaleImageObject.Dispose();
            }
        }
    }
}
using System;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.Image;

namespace Samples.Dynamic
{
    class ConvertToGrayScaleInMemory
    {
        public static void Example()
        {
            var mlContext = new MLContext();
            // Create an image list.
            var images = new[]
            {
                new ImageDataPoint(2, 3, red: 0, green: 0, blue: 255),    // Blue color
                new ImageDataPoint(2, 3, red: 255, green: 0, blue: 0) };  // red color

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var data = mlContext.Data.LoadFromEnumerable(images);

            // Convert image to gray scale.
            var pipeline = mlContext.Transforms.ConvertToGrayscale("GrayImage", "Image");

            // Fit the model.
            var model = pipeline.Fit(data);

            // Test path: image files -> IDataView -> Enumerable of Bitmaps.
            var transformedData = model.Transform(data);

            // Load images in DataView back to Enumerable.
            var transformedDataPoints = mlContext.Data.CreateEnumerable<
                ImageDataPoint>(transformedData, false);

            // Print out input and output pixels.
            foreach (var dataPoint in transformedDataPoints)
            {
                var image = dataPoint.Image;
                var grayImage = dataPoint.GrayImage;

                ReadOnlySpan<byte> imageData = image.Pixels;
                (int alphaIndex, int redIndex, int greenIndex, int blueIndex) = image.PixelFormat switch
                {
                    MLPixelFormat.Bgra32 => (3, 2, 1, 0),
                    MLPixelFormat.Rgba32 => (3, 0, 1, 2),
                    _ => throw new InvalidOperationException($"Image pixel format is not supported")
                };

                ReadOnlySpan<byte> grayImageData = grayImage.Pixels;
                (int alphaIndex1, int redIndex1, int greenIndex1, int blueIndex1) = grayImage.PixelFormat switch
                {
                    MLPixelFormat.Bgra32 => (3, 2, 1, 0),
                    MLPixelFormat.Rgba32 => (3, 0, 1, 2),
                    _ => throw new InvalidOperationException($"Image pixel format is not supported")
                };

                int pixelSize = image.BitsPerPixel / 8;

                for (int i = 0; i < imageData.Length; i += pixelSize)
                {
                    string pixelString = $"[A = {imageData[i + alphaIndex]}, R = {imageData[i + redIndex]}, G = {imageData[i + greenIndex]}, B = {imageData[i + blueIndex]}]";
                    string grayPixelString = $"[A = {grayImageData[i + alphaIndex1]}, R = {grayImageData[i + redIndex1]}, G = {grayImageData[i + greenIndex1]}, B = {grayImageData[i + blueIndex1]}]";

                    Console.WriteLine($"The original pixel is {pixelString} and its pixel in gray is {grayPixelString}");
                }
            }

            // Expected output:
            //   The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
            //   The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
            //   The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
            //   The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
            //   The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
            //   The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
            //   The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
            //   The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
            //   The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
            //   The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
            //   The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
            //   The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
        }

        private class ImageDataPoint
        {
            [ImageType(3, 4)]
            public MLImage Image { get; set; }

            [ImageType(3, 4)]
            public MLImage GrayImage { get; set; }

            public ImageDataPoint()
            {
                Image = null;
                GrayImage = null;
            }

            public ImageDataPoint(int width, int height, byte red, byte green, byte blue)
            {
                byte[] imageData = new byte[width * height * 4]; // 4 for the red, green, blue and alpha colors
                for (int i = 0; i < imageData.Length; i += 4)
                {
                    // Fill the buffer with the Bgra32 format
                    imageData[i] = blue;
                    imageData[i + 1] = green;
                    imageData[i + 2] = red;
                    imageData[i + 3] = 255;
                }

                Image = MLImage.CreateFromPixels(width, height, MLPixelFormat.Bgra32, imageData);
            }
        }
    }
}

適用於