共用方式為


ExtensionsCatalog.ReplaceMissingValues 方法

定義

多載

ReplaceMissingValues(TransformsCatalog, InputOutputColumnPair[], MissingValueReplacingEstimator+ReplacementMode, Boolean)

建立 ColumnCopyingEstimator ,它會將資料從 中指定的 InputColumnName 資料行複製到新的資料行: OutputColumnName 並根據 取代其中 replacementMode 遺漏的值。

ReplaceMissingValues(TransformsCatalog, String, String, MissingValueReplacingEstimator+ReplacementMode, Boolean)

建立 MissingValueReplacingEstimator ,它會將資料從 中指定的 inputColumnName 資料行複製到新的資料行: outputColumnName 並根據 取代其中 replacementMode 遺漏的值。

ReplaceMissingValues(TransformsCatalog, InputOutputColumnPair[], MissingValueReplacingEstimator+ReplacementMode, Boolean)

建立 ColumnCopyingEstimator ,它會將資料從 中指定的 InputColumnName 資料行複製到新的資料行: OutputColumnName 並根據 取代其中 replacementMode 遺漏的值。

public static Microsoft.ML.Transforms.MissingValueReplacingEstimator ReplaceMissingValues (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, Microsoft.ML.Transforms.MissingValueReplacingEstimator.ReplacementMode replacementMode = Microsoft.ML.Transforms.MissingValueReplacingEstimator+ReplacementMode.DefaultValue, bool imputeBySlot = true);
static member ReplaceMissingValues : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * Microsoft.ML.Transforms.MissingValueReplacingEstimator.ReplacementMode * bool -> Microsoft.ML.Transforms.MissingValueReplacingEstimator
<Extension()>
Public Function ReplaceMissingValues (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional replacementMode As MissingValueReplacingEstimator.ReplacementMode = Microsoft.ML.Transforms.MissingValueReplacingEstimator+ReplacementMode.DefaultValue, Optional imputeBySlot As Boolean = true) As MissingValueReplacingEstimator

參數

catalog
TransformsCatalog

轉換的目錄。

columns
InputOutputColumnPair[]

輸入和輸出資料行的配對。 此估算器會透過浮點數或雙精度浮點數的純量或向量運作。

imputeBySlot
Boolean

如果 true 為 ,則會執行取代的個別位置插補。 否則,會針對整個向量資料行插入取代值。 純量和變數向量會忽略此設定,其中插補一律適用于整個資料行。

傳回

範例

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;

namespace Samples.Dynamic
{
    class ReplaceMissingValuesMultiColumn
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features1 = new float[3] {1, 1, 0}, Features2 =
                    new float[2] {1, 1} },

                new DataPoint(){ Features1 = new float[3] {0, float.NaN, 1},
                    Features2 = new float[2] {0, 1} },

                new DataPoint(){ Features1 = new float[3] {-1, float.NaN, -3},
                    Features2 = new float[2] {-1, float.NaN} },

                new DataPoint(){ Features1 = new float[3] {-1, 6, -3}, Features2 =
                    new float[2] {0, float.PositiveInfinity} },
            };
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Here we use the default replacement mode, which replaces the value
            // with the default value for its type.
            var defaultPipeline = mlContext.Transforms.ReplaceMissingValues(new[] {
                new InputOutputColumnPair("MissingReplaced1", "Features1"),
                new InputOutputColumnPair("MissingReplaced2", "Features2")
            },
            MissingValueReplacingEstimator.ReplacementMode.DefaultValue);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var defaultTransformer = defaultPipeline.Fit(data);
            var defaultTransformedData = defaultTransformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var defaultRowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(defaultTransformedData, reuseRowObject:
                false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in defaultRowEnumerable)
                Console.WriteLine("Features1: [" + string.Join(", ", row
                    .Features1) + "]\t MissingReplaced1: [" + string.Join(", ", row
                    .MissingReplaced1) + "]\t Features2: [" + string.Join(", ", row
                    .Features2) + "]\t MissingReplaced2: [" + string.Join(", ", row
                    .MissingReplaced2) + "]");

            // Expected output:
            // Features1: [1, 1, 0]     MissingReplaced1: [1, 1, 0]     Features2: [1, 1]       MissingReplaced2: [1, 1]
            // Features1: [0, NaN, 1]   MissingReplaced1: [0, 0, 1]     Features2: [0, 1]       MissingReplaced2: [0, 1]
            // Features1: [-1, NaN, -3]         MissingReplaced1: [-1, 0, -3]   Features2: [-1, NaN]    MissingReplaced2: [-1, 0]
            // Features1: [-1, 6, -3]   MissingReplaced1: [-1, 6, -3]   Features2: [0, ∞]       MissingReplaced2: [0, ∞]

            // Here we use the mean replacement mode, which replaces the value with
            // the mean of the non values that were not missing.
            var meanPipeline = mlContext.Transforms.ReplaceMissingValues(new[] {
                new InputOutputColumnPair("MissingReplaced1", "Features1"),
                new InputOutputColumnPair("MissingReplaced2", "Features2")
            },
            MissingValueReplacingEstimator.ReplacementMode.Mean);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator.
            // This operation doesn't actually evaluate data until we read the data
            // below.
            var meanTransformer = meanPipeline.Fit(data);
            var meanTransformedData = meanTransformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var meanRowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(meanTransformedData, reuseRowObject: false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in meanRowEnumerable)
                Console.WriteLine("Features1: [" + string.Join(", ", row
                    .Features1) + "]\t MissingReplaced1: [" + string.Join(", ", row
                    .MissingReplaced1) + "]\t Features2: [" + string.Join(", ", row
                    .Features2) + "]\t MissingReplaced2: [" + string.Join(", ", row
                    .MissingReplaced2) + "]");

            // Expected output:
            // Features1: [1, 1, 0]     MissingReplaced1: [1, 1, 0]     Features2: [1, 1]       MissingReplaced2: [1, 1]
            // Features1: [0, NaN, 1]   MissingReplaced1: [0, 3.5, 1]   Features2: [0, 1]       MissingReplaced2: [0, 1]
            // Features1: [-1, NaN, -3]         MissingReplaced1: [-1, 3.5, -3]         Features2: [-1, NaN]    MissingReplaced2: [-1, 1]
            // Features1: [-1, 6, -3]   MissingReplaced1: [-1, 6, -3]   Features2: [0, ∞]       MissingReplaced2: [0, ∞]
        }

        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features1 { get; set; }
            [VectorType(2)]
            public float[] Features2 { get; set; }
        }

        private sealed class SampleDataTransformed : DataPoint
        {
            [VectorType(3)]
            public float[] MissingReplaced1 { get; set; }
            [VectorType(2)]
            public float[] MissingReplaced2 { get; set; }
        }
    }
}

備註

此轉換可以透過數個數據行運作。

適用於

ReplaceMissingValues(TransformsCatalog, String, String, MissingValueReplacingEstimator+ReplacementMode, Boolean)

建立 MissingValueReplacingEstimator ,它會將資料從 中指定的 inputColumnName 資料行複製到新的資料行: outputColumnName 並根據 取代其中 replacementMode 遺漏的值。

public static Microsoft.ML.Transforms.MissingValueReplacingEstimator ReplaceMissingValues (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.MissingValueReplacingEstimator.ReplacementMode replacementMode = Microsoft.ML.Transforms.MissingValueReplacingEstimator+ReplacementMode.DefaultValue, bool imputeBySlot = true);
static member ReplaceMissingValues : Microsoft.ML.TransformsCatalog * string * string * Microsoft.ML.Transforms.MissingValueReplacingEstimator.ReplacementMode * bool -> Microsoft.ML.Transforms.MissingValueReplacingEstimator
<Extension()>
Public Function ReplaceMissingValues (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional replacementMode As MissingValueReplacingEstimator.ReplacementMode = Microsoft.ML.Transforms.MissingValueReplacingEstimator+ReplacementMode.DefaultValue, Optional imputeBySlot As Boolean = true) As MissingValueReplacingEstimator

參數

catalog
TransformsCatalog

轉換的目錄。

outputColumnName
String

轉換 inputColumnName 所產生的資料行名稱。 此資料行的資料類型會與輸入資料行的資料類型相同。

inputColumnName
String

要複製資料的資料行名稱。 此估算器會透過 或 DoubleSingle 純量或向量運作。

imputeBySlot
Boolean

如果為 true,則會執行個別位置的取代插補。 否則,會針對整個向量資料行插入取代值。 純量和變數向量會忽略此設定,其中插補一律適用于整個資料行。

傳回

範例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;

namespace Samples.Dynamic
{
    class ReplaceMissingValues
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[3] {float.PositiveInfinity, 1,
                    0 } },

                new DataPoint(){ Features = new float[3] {0, float.NaN, 1} },
                new DataPoint(){ Features = new float[3] {-1, 2, -3} },
                new DataPoint(){ Features = new float[3] {-1, float.NaN, -3} },
            };
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Here we use the default replacement mode, which replaces the value
            // with the default value for its type.
            var defaultPipeline = mlContext.Transforms.ReplaceMissingValues(
                "MissingReplaced", "Features", MissingValueReplacingEstimator
                .ReplacementMode.DefaultValue);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var defaultTransformer = defaultPipeline.Fit(data);
            var defaultTransformedData = defaultTransformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var defaultRowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(defaultTransformedData, reuseRowObject:
                false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in defaultRowEnumerable)
                Console.WriteLine("Features: [" + string.Join(", ", row.Features) +
                    "]\t MissingReplaced: [" + string.Join(", ", row
                    .MissingReplaced) + "]");

            // Expected output:
            // Features: [∞, 1, 0]      MissingReplaced: [∞, 1, 0]
            // Features: [0, NaN, 1]    MissingReplaced: [0, 0, 1]
            // Features: [-1, 2, -3]    MissingReplaced: [-1, 2, -3]
            // Features: [-1, NaN, -3]  MissingReplaced: [-1, 0, -3]

            // Here we use the mean replacement mode, which replaces the value with
            // the mean of the non values that were not missing.
            var meanPipeline = mlContext.Transforms.ReplaceMissingValues(
                "MissingReplaced", "Features", MissingValueReplacingEstimator
                .ReplacementMode.Mean);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var meanTransformer = meanPipeline.Fit(data);
            var meanTransformedData = meanTransformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var meanRowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(meanTransformedData, reuseRowObject: false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in meanRowEnumerable)
                Console.WriteLine("Features: [" + string.Join(", ", row.Features) +
                    "]\t MissingReplaced: [" + string.Join(", ", row
                    .MissingReplaced) + "]");

            // Expected output:
            // Features: [∞, 1, 0]      MissingReplaced: [∞, 1, 0]
            // Features: [0, NaN, 1]    MissingReplaced: [0, 1.5, 1]
            // Features: [-1, 2, -3]    MissingReplaced: [-1, 2, -3]
            // Features: [-1, NaN, -3]  MissingReplaced: [-1, 1.5, -3]
        }

        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features { get; set; }
        }

        private sealed class SampleDataTransformed : DataPoint
        {
            [VectorType(3)]
            public float[] MissingReplaced { get; set; }
        }
    }
}

適用於