MulticlassClassificationMetrics.PerClassLogLoss 屬性
定義
重要
部分資訊涉及發行前產品,在發行之前可能會有大幅修改。 Microsoft 對此處提供的資訊,不做任何明確或隱含的瑕疵擔保。
取得每個類別之分類器的記錄遺失。 對數損失會測量分類器相對於預測機率與 true 類別標籤相差的效能。 較低的記錄遺失表示更好的模型。 針對 true 類別預測 1 機率的理想模型,將會有 0 的記錄遺失。
public System.Collections.Generic.IReadOnlyList<double> PerClassLogLoss { get; }
member this.PerClassLogLoss : System.Collections.Generic.IReadOnlyList<double>
Public ReadOnly Property PerClassLogLoss As IReadOnlyList(Of Double)
屬性值
範例
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class LogLossPerClass
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion
.MapValueToKey(nameof(DataPoint.Label))
// Apply a multiclass trainer.
.Append(mlContext.MulticlassClassification.Trainers
.LightGbm());
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification
.Evaluate(transformedTestData);
// Find the original label values.
VBuffer<uint> keys = default;
transformedTestData.Schema["PredictedLabel"].GetKeyValues(ref keys);
var originalLabels = keys.DenseValues().ToArray();
for (var i = 0; i < originalLabels.Length; i++)
Console.WriteLine($"LogLoss for label " +
$"{originalLabels[i]}: {metrics.PerClassLogLoss[i]:F4}");
// Expected output:
// LogLoss for label 7: 0.2578
// LogLoss for label 8: 0.2504
// LogLoss for label 2: 0.1121
// LogLoss for label 9: 0.2229
// LogLoss for label 6: 0.1737
// LogLoss for label 1: 0.2645
// LogLoss for label 3: 0.2235
// LogLoss for label 5: 0.1128
// LogLoss for label 4: 0.1442
}
// Generates data points with random features and labels 1 to 9.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 10);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}
// Example with label and 20 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}
}
}
備註
記錄遺失計量會計算為 $-\frac {1} {m} \sum_{i=1}^m \log (p_i) $,其中 $m$ 是測試集中的實例數目。 如果實例屬於 類別,$p_i$ 是分類器傳回的機率,如果實例不屬於類別,則分類器會傳回的機率減 1 減去分類器所傳回的機率。