如何:撰寫 parallel_for 迴圈
此範例示範如何使用 concurrency::p arallel_for 來計算兩個矩陣的乘積。
範例:計算兩個矩陣的乘積
下列範例顯示函 matrix_multiply
式,其會計算兩個平方矩陣的乘積。
// Computes the product of two square matrices.
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
for (size_t i = 0; i < size; i++)
{
for (size_t j = 0; j < size; j++)
{
double temp = 0;
for (int k = 0; k < size; k++)
{
temp += m1[i][k] * m2[k][j];
}
result[i][j] = temp;
}
}
}
範例:以平行的方式計算矩陣相乘
下列範例顯示 函 parallel_matrix_multiply
式,該函式會 parallel_for
使用 演算法平行執行外部迴圈。
// Computes the product of two square matrices in parallel.
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
parallel_for (size_t(0), size, [&](size_t i)
{
for (size_t j = 0; j < size; j++)
{
double temp = 0;
for (int k = 0; k < size; k++)
{
temp += m1[i][k] * m2[k][j];
}
result[i][j] = temp;
}
});
}
此範例只會平行化外部循環,因為它會執行足夠的工作,以受益於平行處理的額外負荷。 如果您平行處理內部迴圈,則不會因為內部迴圈執行的少量工作無法克服平行處理的額外負荷,因此不會獲得效能提升。 因此,只平行處理外部迴圈是讓大多數系統上的並行處理好處最大化的最佳方式。
範例:已完成parallel_for循環程式代碼範例
下列更完整的範例會比較函式與函parallel_matrix_multiply
式的matrix_multiply
效能。
// parallel-matrix-multiply.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <iostream>
#include <random>
using namespace concurrency;
using namespace std;
// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
__int64 begin = GetTickCount();
f();
return GetTickCount() - begin;
}
// Creates a square matrix with the given number of rows and columns.
double** create_matrix(size_t size);
// Frees the memory that was allocated for the given square matrix.
void destroy_matrix(double** m, size_t size);
// Initializes the given square matrix with values that are generated
// by the given generator function.
template <class Generator>
double** initialize_matrix(double** m, size_t size, Generator& gen);
// Computes the product of two square matrices.
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
for (size_t i = 0; i < size; i++)
{
for (size_t j = 0; j < size; j++)
{
double temp = 0;
for (int k = 0; k < size; k++)
{
temp += m1[i][k] * m2[k][j];
}
result[i][j] = temp;
}
}
}
// Computes the product of two square matrices in parallel.
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
parallel_for (size_t(0), size, [&](size_t i)
{
for (size_t j = 0; j < size; j++)
{
double temp = 0;
for (int k = 0; k < size; k++)
{
temp += m1[i][k] * m2[k][j];
}
result[i][j] = temp;
}
});
}
int wmain()
{
// The number of rows and columns in each matrix.
// TODO: Change this value to experiment with serial
// versus parallel performance.
const size_t size = 750;
// Create a random number generator.
mt19937 gen(42);
// Create and initialize the input matrices and the matrix that
// holds the result.
double** m1 = initialize_matrix(create_matrix(size), size, gen);
double** m2 = initialize_matrix(create_matrix(size), size, gen);
double** result = create_matrix(size);
// Print to the console the time it takes to multiply the
// matrices serially.
wcout << L"serial: " << time_call([&] {
matrix_multiply(m1, m2, result, size);
}) << endl;
// Print to the console the time it takes to multiply the
// matrices in parallel.
wcout << L"parallel: " << time_call([&] {
parallel_matrix_multiply(m1, m2, result, size);
}) << endl;
// Free the memory that was allocated for the matrices.
destroy_matrix(m1, size);
destroy_matrix(m2, size);
destroy_matrix(result, size);
}
// Creates a square matrix with the given number of rows and columns.
double** create_matrix(size_t size)
{
double** m = new double*[size];
for (size_t i = 0; i < size; ++i)
{
m[i] = new double[size];
}
return m;
}
// Frees the memory that was allocated for the given square matrix.
void destroy_matrix(double** m, size_t size)
{
for (size_t i = 0; i < size; ++i)
{
delete[] m[i];
}
delete m;
}
// Initializes the given square matrix with values that are generated
// by the given generator function.
template <class Generator>
double** initialize_matrix(double** m, size_t size, Generator& gen)
{
for (size_t i = 0; i < size; ++i)
{
for (size_t j = 0; j < size; ++j)
{
m[i][j] = static_cast<double>(gen());
}
}
return m;
}
下列範例輸出適用於具有四個處理器的電腦。
serial: 3853
parallel: 1311
編譯程式碼
若要編譯程式代碼,請複製程式代碼,然後將它貼到Visual Studio專案中,或貼到名為 parallel-matrix-multiply.cpp
的檔案中,然後在Visual Studio 命令提示字元視窗中執行下列命令。
cl.exe /EHsc parallel-matrix-multiply.cpp