將工作區管理升級至 SDK v2
在 V2 開發平臺中,工作區的功能會保持不變。 不過,有與網路相關的變更需要注意。 如需詳細資訊,請參閱 Azure Resource Manager 上的新 API 平台的網路隔離變更
本文提供 SDK v1 和 SDK v2 中案例的比較。
建立工作區
SDK v1
from azureml.core import Workspace ws = Workspace.create( name='my_workspace', location='eastus', subscription_id = '<SUBSCRIPTION_ID>' resource_group = '<RESOURCE_GROUP>' )
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get a handle to the subscription ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group) # specify the workspace details ws = Workspace( name="my_workspace", location="eastus", display_name="My workspace", description="This example shows how to create a workspace", tags=dict(purpose="demo"), ) ml_client.workspaces.begin_create(ws)
建立工作區以搭配 Azure Private Link 端點使用
SDK v1
from azureml.core import Workspace ws = Workspace.create( name='my_workspace', location='eastus', subscription_id = '<SUBSCRIPTION_ID>' resource_group = '<RESOURCE_GROUP>' ) ple = PrivateEndPointConfig( name='my_private_link_endpoint', vnet_name='<VNET_NAME>', vnet_subnet_name='<VNET_SUBNET_NAME>', vnet_subscription_id='<SUBSCRIPTION_ID>', vnet_resource_group='<RESOURCE_GROUP>' ) ws.add_private_endpoint(ple, private_endpoint_auto_approval=True)
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get a handle to the subscription ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group) ws = Workspace( name="private_link_endpoint_workspace, location="eastus", display_name="Private Link endpoint workspace", description="When using private link, you must set the image_build_compute property to a cluster name to use for Docker image environment building. You can also specify whether the workspace should be accessible over the internet.", image_build_compute="cpu-compute", public_network_access="Disabled", tags=dict(purpose="demonstration"), ) ml_client.workspaces.begin_create(ws)
使用參數載入/連線到工作區
SDK v1
from azureml.core import Workspace ws = Workspace.from_config() # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get handle on the workspace ws = Workspace.get( subscription_id='<SUBSCRIPTION_ID>', resource_group='<RESOURCE_GROUP>', name='my_workspace', )
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get handle on the workspace ws = MLClient( DefaultAzureCredential(), subscription_id='<SUBSCRIPTION_ID>', resource_group_name='<RESOURCE_GROUP>', workspace_name='my_workspace' )
使用組態檔載入/連線到工作區
SDK v1
from azureml.core import Workspace ws = Workspace.from_config() ws.get_details()
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential ws = MLClient.from_config( DefaultAzureCredential() )
SDK v1 和 SDK v2 中的主要功能對應
SDK v1 中的功能 | SDK v2 中的粗略對應 |
---|---|
SDK v1 中的方法/API(使用參考文件的連結) | SDK v2 中的方法/API(使用參考文件的連結) |
相關文件
如需詳細資訊,請參閱