H3 快速入門 (Databricks SQL)
此頁面上的 H3 地理空間函數快速入門說明下列各項:
- 如何將地理位置數據集載入 Unity 目錄。
- 如何將緯度和經度數據行轉換成 H3 單元格數據行。
- 如何將郵遞區編碼多邊形或多多邊形 WKT 資料行轉換成 H3 單元格數據行。
- 如何查詢從拉瓜迪亞機場到曼哈頓金融區的上車和下車分析。
- 如何在地圖上轉譯 H3 匯總計數。
筆記本和查詢的範例
準備 Unity Catalog 資料
在此筆記本中,我們會:
- 從 Databricks Filesystem 設定公用計程車數據集。
- 設定 NYC 郵遞區編碼 數據集。
準備 Unity Catalog 資料
Databricks SQL 查詢與 Databricks Runtime 11.3 LTS 和更新版本
查詢 1: 確認已設定基礎資料。 請參閱筆記本。
use catalog geospatial_docs;
use database nyc_taxi;
show tables;
-- Verify initial data is setup (see instructions in setup notebook)
-- select format_number(count(*),0) as count from yellow_trip;
-- select * from nyc_zipcode;
use catalog geospatial_docs;
use database nyc_taxi;
-- drop table if exists nyc_zipcode_h3_12;
create table if not exists nyc_zipcode_h3_12 as (
select
explode(h3_polyfillash3(geom_wkt, 12)) as cell,
zipcode,
po_name,
county
from
nyc_zipcode
);
-- optional: zorder by `cell`
optimize nyc_zipcode_h3_12 zorder by (cell);
select
*
from
nyc_zipcode_h3_12;
use catalog geospatial_docs;
use database nyc_taxi;
-- drop table if exists yellow_trip_h3_12;
create table if not exists yellow_trip_h3_12 as (
select
h3_longlatash3(pickup_longitude, pickup_latitude, 12) as pickup_cell,
h3_longlatash3(dropoff_longitude, dropoff_latitude, 12) as dropoff_cell,
*
except
(
rate_code_id,
store_and_fwd_flag
)
from
yellow_trip
);
-- optional: zorder by `pickup_cell`
-- optimize yellow_trip_h3_12 zorder by (pickup_cell);
select
*
from
yellow_trip_h3_12
where pickup_cell is not null;
查詢 4: H3 LGA 上車 - 2500 萬人從拉瓜迪亞上車 (LGA)
use catalog geospatial_docs;
use database nyc_taxi;
create
or replace view lga_pickup_h3_12 as (
select
t.*
except(cell),
s.*
from
yellow_trip_h3_12 as s
inner join nyc_zipcode_h3_12 as t on s.pickup_cell = t.cell
where
t.zipcode = '11371'
);
select
format_number(count(*), 0) as count
from
lga_pickup_h3_12;
-- select
-- *
-- from
-- lga_pickup_h3_12;
查詢 5: H3 金融區下車 - 金融區總下車人數為 3400 萬
use catalog geospatial_docs;
use database nyc_taxi;
create
or replace view fd_dropoff_h3_12 as (
select
t.*
except(cell),
s.*
from
yellow_trip_h3_12 as s
inner join nyc_zipcode_h3_12 as t on s.dropoff_cell = t.cell
where
t.zipcode in ('10004', '10005', '10006', '10007', '10038')
);
select
format_number(count(*), 0) as count
from
fd_dropoff_h3_12;
-- select * from fd_dropoff_h3_12;
查詢 6: H3 LGA-FD - 82 萬 7 千人從 LGA 上車,在 FD 下車
use catalog geospatial_docs;
use database nyc_taxi;
create
or replace view lga_fd_dropoff_h3_12 as (
select
*
from
fd_dropoff_h3_12
where
pickup_cell in (
select
distinct pickup_cell
from
lga_pickup_h3_12
)
);
select
format_number(count(*), 0) as count
from
lga_fd_dropoff_h3_12;
-- select * from lga_fd_dropoff_h3_12;
查詢 7: 依郵遞區號的 LGA-FD - 依郵遞區號 + 橫條圖計算 FD 下車人次
use catalog geospatial_docs;
use database nyc_taxi;
select
zipcode,
count(*) as count
from
lga_fd_dropoff_h3_12
group by
zipcode
order by
zipcode;
查詢 8: H3 的 LGA-FD - 使用 H3 資料格計算 FD 下車人次 + 地圖標記視覺效果
use catalog geospatial_docs;
use database nyc_taxi;
select
zipcode,
dropoff_cell,
h3_centerasgeojson(dropoff_cell) :coordinates [0] as dropoff_centroid_x,
h3_centerasgeojson(dropoff_cell) :coordinates [1] as dropoff_centroid_y,
format_number(count(*), 0) as count_disp,
count(*) as `count`
from
lga_fd_dropoff_h3_12
group by
zipcode,
dropoff_cell
order by
zipcode,
`count` DESC;
Databricks Runtime 11.3 LTS 和更新版本筆記本
快速入門-Python:H3 紐約市計程車從拉瓜迪亞至曼哈頓
在筆記本 + kepler.gl 中使用 Spark Python 繫結,與 Databricks SQL 中的快速入門結構相同。
快速入門-Scala:H3 紐約市計程車從拉瓜迪亞至曼哈頓
在 筆記本 + kepler.gl 中透過 Python 資料格使用 Spark Scala 繫結,與 Databricks SQL 中的快速入門結構相同。
快速入門-SQL:H3 紐約市計程車從拉瓜迪亞至曼哈頓
在 筆記本 + kepler.gl 中透過 Python 資料格使用 Spark SQL 繫結,與 Databricks SQL 中的快速入門結構相同。