教學課程:在本機建立、執行及測試 dbt 模型
本教學課程將逐步引導您瞭解如何在本機建立、執行及測試 dbt 模型。 您也可以以 Azure Databricks 作業工作的形式執行 dbt 專案。 如需詳細資訊,請參閱 在 Azure Databricks 作業中使用 dbt 轉換。
開始之前
若要遵循本教學課程,您必須先將 Azure Databricks 工作區連線到 dbt Core。 如需詳細資訊,請參閱連線至 dbt Core。
步驟 1:建立和執行模型
在此步驟中,您會使用您慣用的文本編輯器來建立 模型,這些模型是 select
語句,這些語句會根據該資料庫中的現有數據,建立新的檢視(預設值) 或資料庫中的新數據表。 此程式會根據 範例數據集 diamonds
數據表建立模型。
使用下列程式代碼來建立此數據表。
DROP TABLE IF EXISTS diamonds;
CREATE TABLE diamonds USING CSV OPTIONS (path "/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv", header "true")
在項目的
models
目錄中,使用下列 SQL 語句建立名為diamonds_four_cs.sql
的檔案。 此語句只會從diamonds
數據表中選取每個鑽石的克拉、切工、顏色和淨度詳細數據。config
區塊會指示 dbt 根據這個語句在資料庫中建立數據表。{{ config( materialized='table', file_format='delta' ) }}
select carat, cut, color, clarity from diamonds
提示
如需其他
config
選項,例如使用 Delta 檔格式和merge
累加策略,請參閱 dbt 檔中的 Databricks 組態 。在項目的
models
目錄中,使用下列 SQL 語句建立名為diamonds_list_colors.sql
的第二個檔案。 此語句會從diamonds_four_cs
數據表的 [colors
] 數據行中選取唯一值,先依字母順序排序結果。 由於沒有config
區塊,此模型將指示 dbt 根據此陳述式在資料庫中建立檢視。select distinct color from {{ ref('diamonds_four_cs') }} sort by color asc
在項目的
models
目錄中,使用下列 SQL 語句建立名為diamonds_prices.sql
的第三個檔案。 此陳述式依色彩計算寶石的平均價格,並依平均價格從最高到最低對結果進行排序。 此模型將指示 dbt 根據此陳述式在資料庫中建立檢視。select color, avg(price) as price from diamonds group by color order by price desc
啟用虛擬環境后,使用上述三個檔案的路徑執行
dbt run
命令。 在default
資料庫中(如profiles.yml
檔案中所指定),dbt 會建立一個名為diamonds_four_cs
的數據表,以及名為diamonds_list_colors
和diamonds_prices
的兩個檢視表。 dbt 會從其相關的.sql
檔名取得這些檢視和數據表名稱。dbt run --model models/diamonds_four_cs.sql models/diamonds_list_colors.sql models/diamonds_prices.sql
... ... | 1 of 3 START table model default.diamonds_four_cs.................... [RUN] ... | 1 of 3 OK created table model default.diamonds_four_cs............... [OK ...] ... | 2 of 3 START view model default.diamonds_list_colors................. [RUN] ... | 2 of 3 OK created view model default.diamonds_list_colors............ [OK ...] ... | 3 of 3 START view model default.diamonds_prices...................... [RUN] ... | 3 of 3 OK created view model default.diamonds_prices................. [OK ...] ... | ... | Finished running 1 table model, 2 view models ... Completed successfully Done. PASS=3 WARN=0 ERROR=0 SKIP=0 TOTAL=3
執行下列 SQL 程式代碼來列出新檢視的相關信息,以及從數據表和檢視中選取所有數據列。
如果您要連線到叢集,您可以從連線到叢集的筆記本執行此 SQL 程式代碼,並將 SQL 指定為筆記本的預設語言。 如果要連線至 SQL 倉儲,您可以從查詢執行此 SQL 程式碼。
SHOW views IN default;
+-----------+----------------------+-------------+ | namespace | viewName | isTemporary | +===========+======================+=============+ | default | diamonds_list_colors | false | +-----------+----------------------+-------------+ | default | diamonds_prices | false | +-----------+----------------------+-------------+
SELECT * FROM diamonds_four_cs;
+-------+---------+-------+---------+ | carat | cut | color | clarity | +=======+=========+=======+=========+ | 0.23 | Ideal | E | SI2 | +-------+---------+-------+---------+ | 0.21 | Premium | E | SI1 | +-------+---------+-------+---------+ ...
SELECT * FROM diamonds_list_colors;
+-------+ | color | +=======+ | D | +-------+ | E | +-------+ ...
SELECT * FROM diamonds_prices;
+-------+---------+ | color | price | +=======+=========+ | J | 5323.82 | +-------+---------+ | I | 5091.87 | +-------+---------+ ...
步驟 2:建立和執行更複雜的模型
在此步驟中,您會為一組相關的數據表建立更複雜的模型。 這些數據表包含三支球隊在一個賽季中進行六場比賽的虛構體育聯盟的相關信息。 此程式會建立數據表、建立模型,以及執行模型。
執行下列 SQL 程式代碼來建立必要的資料表。
如果您要連線到叢集,您可以從連線到叢集的筆記本執行此 SQL 程式代碼,並將 SQL 指定為筆記本的預設語言。 如果要連線至 SQL 倉儲,您可以從查詢執行此 SQL 程式碼。
此步驟中的數據表和檢視會從
zzz_
開始,以協助識別它們作為此範例的一部分。 您不需要針對自己的數據表和檢視遵循此模式。DROP TABLE IF EXISTS zzz_game_opponents; DROP TABLE IF EXISTS zzz_game_scores; DROP TABLE IF EXISTS zzz_games; DROP TABLE IF EXISTS zzz_teams; CREATE TABLE zzz_game_opponents ( game_id INT, home_team_id INT, visitor_team_id INT ) USING DELTA; INSERT INTO zzz_game_opponents VALUES (1, 1, 2); INSERT INTO zzz_game_opponents VALUES (2, 1, 3); INSERT INTO zzz_game_opponents VALUES (3, 2, 1); INSERT INTO zzz_game_opponents VALUES (4, 2, 3); INSERT INTO zzz_game_opponents VALUES (5, 3, 1); INSERT INTO zzz_game_opponents VALUES (6, 3, 2); -- Result: -- +---------+--------------+-----------------+ -- | game_id | home_team_id | visitor_team_id | -- +=========+==============+=================+ -- | 1 | 1 | 2 | -- +---------+--------------+-----------------+ -- | 2 | 1 | 3 | -- +---------+--------------+-----------------+ -- | 3 | 2 | 1 | -- +---------+--------------+-----------------+ -- | 4 | 2 | 3 | -- +---------+--------------+-----------------+ -- | 5 | 3 | 1 | -- +---------+--------------+-----------------+ -- | 6 | 3 | 2 | -- +---------+--------------+-----------------+ CREATE TABLE zzz_game_scores ( game_id INT, home_team_score INT, visitor_team_score INT ) USING DELTA; INSERT INTO zzz_game_scores VALUES (1, 4, 2); INSERT INTO zzz_game_scores VALUES (2, 0, 1); INSERT INTO zzz_game_scores VALUES (3, 1, 2); INSERT INTO zzz_game_scores VALUES (4, 3, 2); INSERT INTO zzz_game_scores VALUES (5, 3, 0); INSERT INTO zzz_game_scores VALUES (6, 3, 1); -- Result: -- +---------+-----------------+--------------------+ -- | game_id | home_team_score | visitor_team_score | -- +=========+=================+====================+ -- | 1 | 4 | 2 | -- +---------+-----------------+--------------------+ -- | 2 | 0 | 1 | -- +---------+-----------------+--------------------+ -- | 3 | 1 | 2 | -- +---------+-----------------+--------------------+ -- | 4 | 3 | 2 | -- +---------+-----------------+--------------------+ -- | 5 | 3 | 0 | -- +---------+-----------------+--------------------+ -- | 6 | 3 | 1 | -- +---------+-----------------+--------------------+ CREATE TABLE zzz_games ( game_id INT, game_date DATE ) USING DELTA; INSERT INTO zzz_games VALUES (1, '2020-12-12'); INSERT INTO zzz_games VALUES (2, '2021-01-09'); INSERT INTO zzz_games VALUES (3, '2020-12-19'); INSERT INTO zzz_games VALUES (4, '2021-01-16'); INSERT INTO zzz_games VALUES (5, '2021-01-23'); INSERT INTO zzz_games VALUES (6, '2021-02-06'); -- Result: -- +---------+------------+ -- | game_id | game_date | -- +=========+============+ -- | 1 | 2020-12-12 | -- +---------+------------+ -- | 2 | 2021-01-09 | -- +---------+------------+ -- | 3 | 2020-12-19 | -- +---------+------------+ -- | 4 | 2021-01-16 | -- +---------+------------+ -- | 5 | 2021-01-23 | -- +---------+------------+ -- | 6 | 2021-02-06 | -- +---------+------------+ CREATE TABLE zzz_teams ( team_id INT, team_city VARCHAR(15) ) USING DELTA; INSERT INTO zzz_teams VALUES (1, "San Francisco"); INSERT INTO zzz_teams VALUES (2, "Seattle"); INSERT INTO zzz_teams VALUES (3, "Amsterdam"); -- Result: -- +---------+---------------+ -- | team_id | team_city | -- +=========+===============+ -- | 1 | San Francisco | -- +---------+---------------+ -- | 2 | Seattle | -- +---------+---------------+ -- | 3 | Amsterdam | -- +---------+---------------+
在項目的
models
目錄中,使用下列 SQL 語句建立名為zzz_game_details.sql
的檔案。 此語句會建立一個數據表,提供每個遊戲的詳細數據,例如小組名稱和分數。config
區塊會指示 dbt 根據這個語句在資料庫中建立數據表。-- Create a table that provides full details for each game, including -- the game ID, the home and visiting teams' city names and scores, -- the game winner's city name, and the game date.
{{ config( materialized='table', file_format='delta' ) }}
-- Step 4 of 4: Replace the visitor team IDs with their city names. select game_id, home, t.team_city as visitor, home_score, visitor_score, -- Step 3 of 4: Display the city name for each game's winner. case when home_score > visitor_score then home when visitor_score > home_score then t.team_city end as winner, game_date as date from ( -- Step 2 of 4: Replace the home team IDs with their actual city names. select game_id, t.team_city as home, home_score, visitor_team_id, visitor_score, game_date from ( -- Step 1 of 4: Combine data from various tables (for example, game and team IDs, scores, dates). select g.game_id, go.home_team_id, gs.home_team_score as home_score, go.visitor_team_id, gs.visitor_team_score as visitor_score, g.game_date from zzz_games as g, zzz_game_opponents as go, zzz_game_scores as gs where g.game_id = go.game_id and g.game_id = gs.game_id ) as all_ids, zzz_teams as t where all_ids.home_team_id = t.team_id ) as visitor_ids, zzz_teams as t where visitor_ids.visitor_team_id = t.team_id order by game_date desc
在項目的
models
目錄中,使用下列 SQL 語句建立名為zzz_win_loss_records.sql
的檔案。 此陳述式會建立一個檢視,其中列出該賽季隊伍的勝負記錄。-- Create a view that summarizes the season's win and loss records by team. -- Step 2 of 2: Calculate the number of wins and losses for each team. select winner as team, count(winner) as wins, -- Each team played in 4 games. (4 - count(winner)) as losses from ( -- Step 1 of 2: Determine the winner and loser for each game. select game_id, winner, case when home = winner then visitor else home end as loser from {{ ref('zzz_game_details') }} ) group by winner order by wins desc
啟用虛擬環境之後,請使用上述兩個檔案的路徑執行
dbt run
命令。 在default
資料庫中(如profiles.yml
檔案中所指定),dbt 會建立一個名為zzz_game_details
的數據表,以及一個名為zzz_win_loss_records
的檢視表。 dbt 會從其相關的.sql
檔名取得這些檢視和數據表名稱。dbt run --model models/zzz_game_details.sql models/zzz_win_loss_records.sql
... ... | 1 of 2 START table model default.zzz_game_details.................... [RUN] ... | 1 of 2 OK created table model default.zzz_game_details............... [OK ...] ... | 2 of 2 START view model default.zzz_win_loss_records................. [RUN] ... | 2 of 2 OK created view model default.zzz_win_loss_records............ [OK ...] ... | ... | Finished running 1 table model, 1 view model ... Completed successfully Done. PASS=2 WARN=0 ERROR=0 SKIP=0 TOTAL=2
執行下列 SQL 程式代碼來列出新檢視的相關信息,以及從數據表和檢視中選取所有數據列。
如果您要連線到叢集,您可以從連線到叢集的筆記本執行此 SQL 程式代碼,並將 SQL 指定為筆記本的預設語言。 如果要連線至 SQL 倉儲,您可以從查詢執行此 SQL 程式碼。
SHOW VIEWS FROM default LIKE 'zzz_win_loss_records';
+-----------+----------------------+-------------+ | namespace | viewName | isTemporary | +===========+======================+=============+ | default | zzz_win_loss_records | false | +-----------+----------------------+-------------+
SELECT * FROM zzz_game_details;
+---------+---------------+---------------+------------+---------------+---------------+------------+ | game_id | home | visitor | home_score | visitor_score | winner | date | +=========+===============+===============+============+===============+===============+============+ | 1 | San Francisco | Seattle | 4 | 2 | San Francisco | 2020-12-12 | +---------+---------------+---------------+------------+---------------+---------------+------------+ | 2 | San Francisco | Amsterdam | 0 | 1 | Amsterdam | 2021-01-09 | +---------+---------------+---------------+------------+---------------+---------------+------------+ | 3 | Seattle | San Francisco | 1 | 2 | San Francisco | 2020-12-19 | +---------+---------------+---------------+------------+---------------+---------------+------------+ | 4 | Seattle | Amsterdam | 3 | 2 | Seattle | 2021-01-16 | +---------+---------------+---------------+------------+---------------+---------------+------------+ | 5 | Amsterdam | San Francisco | 3 | 0 | Amsterdam | 2021-01-23 | +---------+---------------+---------------+------------+---------------+---------------+------------+ | 6 | Amsterdam | Seattle | 3 | 1 | Amsterdam | 2021-02-06 | +---------+---------------+---------------+------------+---------------+---------------+------------+
SELECT * FROM zzz_win_loss_records;
+---------------+------+--------+ | team | wins | losses | +===============+======+========+ | Amsterdam | 3 | 1 | +---------------+------+--------+ | San Francisco | 2 | 2 | +---------------+------+--------+ | Seattle | 1 | 3 | +---------------+------+--------+
步驟 3:建立並執行測試
在此步驟中,您將建立測試,這些測試是您對模型所做的判斷提示。 執行這些測試時,dbt 會告訴您專案中的每個測試是通過還是失敗。
有兩種類型的測試。 架構測試套用在 YAML 中,返回未通過斷言的記錄數量。 此數字為零時,表示所有記錄都通過,因此測試也通過。 資料測試是必須傳回零個記錄才算通過的特定查詢。
在項目的
models
目錄中,使用下列內容建立名為schema.yml
的檔案。 此檔案包含架構測試,可判斷指定的數據行是否具有唯一值、不是 Null、只有指定的值或組合。version: 2 models: - name: zzz_game_details columns: - name: game_id tests: - unique - not_null - name: home tests: - not_null - accepted_values: values: ['Amsterdam', 'San Francisco', 'Seattle'] - name: visitor tests: - not_null - accepted_values: values: ['Amsterdam', 'San Francisco', 'Seattle'] - name: home_score tests: - not_null - name: visitor_score tests: - not_null - name: winner tests: - not_null - accepted_values: values: ['Amsterdam', 'San Francisco', 'Seattle'] - name: date tests: - not_null - name: zzz_win_loss_records columns: - name: team tests: - unique - not_null - relationships: to: ref('zzz_game_details') field: home - name: wins tests: - not_null - name: losses tests: - not_null
在項目的
tests
目錄中,使用下列 SQL 語句建立名為zzz_game_details_check_dates.sql
的檔案。 此檔案包含一個資料測試,用於確定常規賽季外是否進行了任何比賽。-- This season's games happened between 2020-12-12 and 2021-02-06. -- For this test to pass, this query must return no results. select date from {{ ref('zzz_game_details') }} where date < '2020-12-12' or date > '2021-02-06'
在項目的
tests
目錄中,使用下列 SQL 語句建立名為zzz_game_details_check_scores.sql
的檔案。 此檔案包含一個資料測試,用於確定是否有任何分數為負或任何比賽為平局。-- This sport allows no negative scores or tie games. -- For this test to pass, this query must return no results. select home_score, visitor_score from {{ ref('zzz_game_details') }} where home_score < 0 or visitor_score < 0 or home_score = visitor_score
在項目的
tests
目錄中,使用下列 SQL 語句建立名為zzz_win_loss_records_check_records.sql
的檔案。 此檔案包含一個資料測試,用於確定任何隊伍是否有負數的勝場或敗場記錄、是否有超過進行比賽數的勝負記錄,或者進行的比賽數是否多於允許的比賽數。-- Each team participated in 4 games this season. -- For this test to pass, this query must return no results. select wins, losses from {{ ref('zzz_win_loss_records') }} where wins < 0 or wins > 4 or losses < 0 or losses > 4 or (wins + losses) > 4
啟用虛擬環境後,執行
dbt test
命令。dbt test --models zzz_game_details zzz_win_loss_records
... ... | 1 of 19 START test accepted_values_zzz_game_details_home__Amsterdam__San_Francisco__Seattle [RUN] ... | 1 of 19 PASS accepted_values_zzz_game_details_home__Amsterdam__San_Francisco__Seattle [PASS ...] ... ... | ... | Finished running 19 tests ... Completed successfully Done. PASS=19 WARN=0 ERROR=0 SKIP=0 TOTAL=19
步驟 4:清理
您可以執行下列 SQL 程式代碼,以刪除您為此範例建立的數據表和檢視。
如果您要連線到叢集,您可以從連線到叢集的筆記本執行此 SQL 程式代碼,並將 SQL 指定為筆記本的預設語言。 如果要連線至 SQL 倉儲,您可以從查詢執行此 SQL 程式碼。
DROP TABLE zzz_game_opponents;
DROP TABLE zzz_game_scores;
DROP TABLE zzz_games;
DROP TABLE zzz_teams;
DROP TABLE zzz_game_details;
DROP VIEW zzz_win_loss_records;
DROP TABLE diamonds;
DROP TABLE diamonds_four_cs;
DROP VIEW diamonds_list_colors;
DROP VIEW diamonds_prices;
疑難排解
如需搭配 Azure Databricks 使用 dbt Core 以及如何解決常見問題的相關信息,請參閱 在 dbt Labs 網站上取得協助 。
下一步
以 Azure Databricks 作業工作的形式執行 dbt Core 專案。 請參閱在 Azure Databricks 作業中使用 dbt 轉換。
其他資源
探索 dbt Labs 網站上的下列資源: