適用於機器學習的 Databricks Runtime 7.6 (EoS)
注意
針對此 Databricks Runtime 版本的支援已結束。 如需了解終止支援日期,請參閱終止支援歷程記錄。 如需所有支援的 Databricks Runtime 版本,請參閱 Databricks Runtime 版本資訊版本和相容性 (機器翻譯)。
Databricks 於 2021 年 2 月發行此版本。
適用於機器學習的 Databricks Runtime 7.6 提供以 Databricks Runtime 7.6 (EoS) 為基礎的機器學習和資料科學現成環境。 Databricks Runtime ML 含有許多熱門的機器學習程式庫,包括 TensorFlow、PyTorch 以及 XGBoost。 其也支援使用 Horovod 的分散式深度學習訓練。
如需詳細資訊,包括建立 Databricks Runtime ML 叢集的指示,請參閱 Databricks 上的 AI 和機器學習。
如需從 Databricks Runtime 6.x 移轉的說明,請參閱 Databricks Runtime 7.x 移轉指南 (EoS)。
新功能和重大變更
Databricks Runtime 7.6 ML 是以 Databricks Runtime 7.6 為基礎而建置。 如需 Databricks Runtime 7.6 新增功能的相關資訊,包括 Apache Spark MLlib 和 SparkR,請參閱 Databricks Runtime 7.6 (EoS) 版本資訊。
棄用項目
- Databricks Runtime 即將推出的主要版本將不支援 Tensoflow 1.x
- 以下 CUDA 套件已棄用,並將在即將推出的 Databricks Runtime 主要版本移除:
- cuda-command-line-tools
- cuda-compiler
- cuda-cudart-dev
- cuda-cufft
- cuda-cufft-dev
- cuda-cuobjdump
- cuda-cupti
- cuda-curand
- cuda-curand-dev
- cuda-cusolver
- cuda-cusolver-dev
- cuda-cusparse
- cuda-cusparse-dev
- cuda-documentation
- cuda-driver-dev
- cuda-gdb
- cuda-gpu-library-advisor
- cuda-libraries-dev
- cuda-license
- cuda-memcheck
- cuda-minimal-build
- cuda-misc-headers
- cuda-npp
- cuda-npp-dev
- cuda-nsight
- cuda-nvcc
- cuda-nvdisasm
- cuda-nvgraph
- cuda-nvgraph-dev
- cuda-nvjpeg
- cuda-nvjpeg-dev
- cuda-nvml-dev
- cuda-nvprune
- cuda-nvrtc-dev
- cuda-nvvp
- cuda-samples
- cuda-sanitizer-api
- cuda-toolkit
- cuda-tools
- cuda-visual-tools
- freeglut3
- libcublas-dev
- libcudnn7-dev
- libdrm-dev
- libegl1
- libegm-mesa0
- libgbl1-mesa-dev
- libgbm1
- libgles1
- libgles2
- libglu1-mesa
- libglu1-mesa-dev
- libnccl-dev
- libnvinfer-dev
- libnvinfer-plugin-dev
- libopengl0
- libwayland-server0
- libx11-xcb-dev
- libxcb-dri2-0-dev
- libxcb-dri3-dev
- libxcb-glx0-dev
- libxcb-present-dev
- libxcb-randr0
- libxcb-randr0-dev
- libxcb-render0-dev
- libxcb-shape0-dev
- libxcb-sync-dev
- libxcb-xfixes0
- libxcb-xfixes0-dev
- libxdamage-dev
- libxext-dev
- libxfixes-dev
- libxi-dev
- libxmu-dev
- libxmu-headers
- libxshmfence-dev
- libxxf86vm-dev
- mesa-common-dev
- nsight-compute
- nsight-systems
- x11proto-damage-dev
- x11proto-fixes-dev
- x11proto-input-dev
- x11proto-xext-dev
- x11proto-xf86vidmode-dev
Databricks Runtime ML Python 環境的主要變更
如需 Databricks Runtime Python 環境的主要變更,請參閱 Databricks Runtime 7.6 (EoS)。 如需已安裝 Python 套件及其版本的完整清單,請參閱 Python 程式庫。
已升級 Python 套件
- databricks-cli 0.14.0 -> 0.14.1
- koalas 1.4.0 -> 1.5.0
- lightgbm 2.3.0 -> 3.1.1
- mlflow 1.12.1 -> 1.13.1
- plotly 4.12.0 -> 4.14.1
- pytorch 1.7.0 -> 1.7.1
- torchvision 0.8.1 -> 0.8.2
- xgboost 1.2.1 -> 1.3.1
改善
XGBoost 的 PySpark 整合(公開預覽版)
XGBoost 與 PySpark 的整合已得到改善。 該套件 sparkdl 2.1.0-db5
包括兩個新的 PySpark ML 預估工具 XgboostRegressor
與 XgboostClassifier
,讓使用者可以在 PySpark ML Pipelines 訓練 XGBoost 模型。
在此版本之前,XGBoost 未與 PySpark 整合。 使用者必須在 Scala 使用 xgboost4j-spark
或中斷 PySpark ML Pipeline,將驅動程式的 Spark DataFrame 收集為 pandas DataFrame,並使用 Python 套件 xgboost
。 請參閱 sparkdl API 文件,並在 Azure Databricks 使用 XGBoost 來瞭解更多詳細資訊。
系統環境
如下所示,Databricks Runtime 7.6 ML 中的系統環境與 Databricks Runtime 7.6 有所不同:
- DBUtils:Databricks Runtime ML 不包含程式庫公用程式 (dbutils.library) (舊版)。
您可以改用
%pip
與%conda
命令。 請參閱筆記本範圍的 Python 程式庫。 - 對於 GPU 叢集,Databricks Runtime ML 包含下列 NVIDIA GPU 程式庫:
- CUDA 10.1 Update 2
- cuDNN 7.6.5
- NCCL 2.7.3
- TensorRT 6.0.1
程式庫
下列各節列出 Databricks Runtime 7.6 ML 中,與 Databricks Runtime 7.6 所包含程式庫有所不同的程式庫。
本節內容:
頂層程式庫
Databricks Runtime 7.6 ML 包含下列頂層程式庫:
- GraphFrames
- Horovod 及 HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Python 程式庫
Databricks Runtime 7.6 ML 使用 Conda 進行 Python 套件管理,並包含許多熱門 ML 套件。
除了以下章節在 Conda 環境指定的套件外,Databricks Runtime 7.6 ML 還安裝以下套件:
- hyperopt 0.2.5.db1
- sparkdl 2.1.0-db5
CPU 叢集上的 Python 程式庫
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=pyhd3eb1b0_2
- bcrypt=3.2.0=py37h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.17.1=h27cfd23_0
- ca-certificates=2021.1.19=h06a4308_1 # (updated from h06a4308_0 in May 26, 2021 maintenance update)
- cachetools=4.2.0=pyhd3eb1b0_0
- certifi=2020.12.5=py37h06a4308_0
- cffi=1.14.0=py37he30daa8_1 # (updated from py37h2e261b9_0 in May 26, 2021 maintenance update)
- chardet=3.0.4=py37h06a4308_1003
- click=7.0=py37_0
- cloudpickle=1.4.1=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.8=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.17.2=py37h06a4308_1
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.17.1=h173b8e3_0 # (updated from 1.16.4 in May 26, 2021 maintenance update)
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.3=he6710b0_2 # (updated from 3.2.1 in May 26, 2021 maintenance update)
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=12.2=h20c2e04_0 # (updated from 11.2 in May 26, 2021 maintenance update)
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- libuv=1.40.0=h7b6447c_0
- lightgbm=3.1.1=py37h2531618_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he8ac12f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.10.2=py37hff7bd54_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1k=h27cfd23_0 # (updated from 1.1.1i in May 26, 2021 maintenance update)
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.14.1=pyhd3eb1b0_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.6=py37h3c74f83_1 # (updated from 2.8.4 in May 26, 2021 maintenance update)
- ptyprocess=0.6.0=pyhd3eb1b0_2
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=2.0.1=py37h06a4308_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=pyhd3eb1b0_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.10=hdb3f193_0 # (updated from 3.7.6 in May 26, 2021 maintenance update)
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.7.1=py3.7_cpu_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=8.1=h27cfd23_0 # (updated from 7.0 in May 26, 2021 maintenance update)
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.4=pyhd3eb1b0_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37h06a4308_0
- smmap=3.0.4=py_0
- sqlite=3.35.4=hdfb4753_0 # (updated from 3.31.1 in May 26, 2021 maintenance update)
- sqlparse=0.4.1=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.10=hbc83047_0 # (updated from 8.6.8 in May 26, 2021 maintenance update)
- torchvision=0.8.2=py37_cpu
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- typing_extensions=3.7.4.3=py_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.5=h7b6447c_0 # (updated from 5.2.4 in May 26, 2021 maintenance update)
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.10.0
- azure-storage-blob==12.7.0
- databricks-cli==0.14.1
- diskcache==5.1.0
- docker==4.4.1
- gorilla==0.3.0
- horovod==0.20.3
- joblibspark==0.3.0
- keras-preprocessing==1.1.2
- koalas==1.5.0
- mleap==0.16.1
- mlflow==1.13.1
- msrest==0.6.19
- opt-einsum==3.3.0
- petastorm==0.9.7
- pyarrow==1.0.1
- pyyaml==5.4
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- tensorboard==2.3.0
- tensorboard-plugin-wit==1.8.0
- tensorflow-cpu==2.3.1
- tensorflow-estimator==2.3.0
- termcolor==1.1.0
- xgboost==1.3.1
prefix: /databricks/conda/envs/databricks-ml
GPU 叢集上的 Python 程式庫
name: databricks-ml-gpu
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=pyhd3eb1b0_2
- bcrypt=3.2.0=py37h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.17.1=h27cfd23_0
- ca-certificates=2021.1.19=h06a4308_1 # (updated from h06a4308_0 in May 26, 2021 maintenance update)
- cachetools=4.2.0=pyhd3eb1b0_0
- certifi=2020.12.5=py37h06a4308_0
- cffi=1.14.0=py37he30daa8_1 # (updated from py37h2e261b9_0 in May 26, 2021 maintenance update)
- chardet=3.0.4=py37h06a4308_1003
- click=7.0=py37_0
- cloudpickle=1.4.1=py_0
- configparser=3.7.4=py37_0
- cryptography=2.8=py37h1ba5d50_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.17.2=py37h06a4308_1
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.17.1=h173b8e3_0 # (updated from 1.16.4 in May 26, 2021 maintenance update)
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.3=he6710b0_2 # (updated from 3.2.1 in May 26, 2021 maintenance update)
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=12.2=h20c2e04_0 # (updated from 11.2 in May 26, 2021 maintenance update)
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- libuv=1.40.0=h7b6447c_0
- lightgbm=3.1.1=py37h2531618_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he8ac12f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.10.2=py37hff7bd54_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1k=h27cfd23_0 # (updated from 1.1.1i in May 26, 2021 maintenance update)
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.14.1=pyhd3eb1b0_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.6=py37h3c74f83_1 # (updated from 2.8.4 in May 26, 2021 maintenance update)
- ptyprocess=0.6.0=pyhd3eb1b0_2
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=2.0.1=py37h06a4308_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=pyhd3eb1b0_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.10=hdb3f193_0 # (updated from 3.7.6 in May 26, 2021 maintenance update)
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.7.1=py3.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=8.1=h27cfd23_0 # (updated from 7.0 in May 26, 2021 maintenance update)
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.4=pyhd3eb1b0_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37h06a4308_0
- smmap=3.0.4=py_0
- sqlite=3.35.4=hdfb4753_0 # (updated from 3.31.1 in May 26, 2021 maintenance update)
- sqlparse=0.4.1=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.10=hbc83047_0 # (updated from 8.6.8 in May 26, 2021 maintenance update)
- torchvision=0.8.2=py37_cu101
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- typing_extensions=3.7.4.3=py_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.5=h7b6447c_0 # (updated from 5.2.4 in May 26, 2021 maintenance update)
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.10.0
- azure-storage-blob==12.7.0
- databricks-cli==0.14.1
- diskcache==5.1.0
- docker==4.4.1
- gorilla==0.3.0
- horovod==0.20.3
- joblibspark==0.3.0
- keras-preprocessing==1.1.2
- koalas==1.5.0
- mleap==0.16.1
- mlflow==1.13.1
- msrest==0.6.19
- opt-einsum==3.3.0
- petastorm==0.9.7
- pyarrow==1.0.1
- pyyaml==5.4
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- tensorboard==2.3.0
- tensorboard-plugin-wit==1.8.0
- tensorflow==2.3.1
- tensorflow-estimator==2.3.0
- termcolor==1.1.0
- xgboost==1.3.1
prefix: /databricks/conda/envs/databricks-ml-gpu
包含 Python 模組的 Spark 套件
Spark 封裝 | Python 模組 | 版本 |
---|---|---|
graphframes | graphframes | 0.8.1-db1-spark3.0 |
R 程式庫
R 程式庫與 Databricks Runtime 7.6 中的 R 程式庫相同。
Java 和 Scala 程式庫 (Scala 2.12 叢集)
除了 Databricks Runtime 7.6 中的 Java 和 Scala 程式庫之外,Databricks Runtime 7.6 ML 還包含下列 JAR:
CPU 叢集
群組識別碼 | 成品識別碼 | 版本 |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.2.0 |
ml.dmlc | xgboost4j_2.12 | 1.2.0 |
org.mlflow | mlflow-client | 1.13.1 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
GPU clusters
群組識別碼 | 成品識別碼 | 版本 |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark-gpu_2.12 | 1.2.0 |
ml.dmlc | xgboost4j-gpu_2.12 | 1.2.0 |
org.mlflow | mlflow-client | 1.13.1 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |