Databricks Runtime 7.0 ML (EoS)
注意
針對此 Databricks Runtime 版本的支援已結束。 如需了解終止支援日期,請參閱終止支援歷程記錄。 如需所有支援的 Databricks Runtime 版本,請參閱 Databricks Runtime 版本資訊版本和相容性 (機器翻譯)。
Databricks 於 2020 年 6 月發行此版本。
適用於機器學習的 Databricks Runtime 7.0 提供以 Databricks Runtime 7.0 (EoS) 為基礎的機器學習和資料科學現成環境。 Databricks Runtime ML 含有許多熱門的機器學習程式庫,包括 TensorFlow、PyTorch 以及 XGBoost。 其也支援使用 Horovod 的分散式深度學習訓練。
如需詳細資訊,包括建立 Databricks Runtime ML 叢集的指示,請參閱 Databricks 上的 AI 和機器學習。
新功能和重大變更
Databricks Runtime 7.0 ML 是以 Databricks Runtime 7.0 為基礎而建置。 如需 Databricks Runtime 7.0 新增功能的相關資訊,包括 Apache Spark MLlib 和 SparkR,請參閱 Databricks Runtime 7.0 (EoS) 版本資訊。
GPU 感知排程
Databricks Runtime 7.0 ML 支援 Apache Spark 3.0 的 GPU 感知排程。 Azure Databricks 會自動為您設定。 請參閱 GPU 排程。
ML Python 環境的重大變更
本節說明與 Databricks Runtime 6.6 ML (EoS) 相比,預先安裝的 ML Python 環境的主要變更。 您也應該檢閱 Databricks Runtime 7.0 (EoS) 中 基本 Python 環境的重大變更。 如需已安裝 Python 套件及其版本的完整清單,請參閱 Python 程式庫。
已升級 Python 套件
- tensorflow 1.15.0 -> 2.2.0
- tensorboard 1.15.0 -> 2.2.2
- pytorch 1.4.0 -> 1.5.0
- xgboost 0.90 -> 1.1.1
- sparkdl 1.6.0-db1 -> 2.1.0-db1
- hyperopt 0.2.2.db1 -> 0.2.4.db1
已新增的 Python 套件
- lightgbm: 2.3.0
- nltk: 3.4.5
- petastorm: 0.9.2
- plotly: 4.5.2
已移除的 Python 套件
- argparse
- boto (改用
boto3
) - colorama
- 已被取代
- et-xmlfile
- fusepy
- html5lib
- jdcal
- keras (改用
tensorflow.keras
) - keras-applications (改用
tensorflow.keras.applications
) - llvmlite
- lxml
- nose
- nose-exclude
- numba
- openpyxl
- pathlib2
- ply
- pymongo
- singledispatch
- tensorboardX (改用
torch.utils.tensorboard
) - virtualenv
- webencodings
ML R 環境的重大變更
DDatabricks Runtime 7.0 ML 包含未修改版本的 RStudio Server Open Source v1.2.5033,其原始程式碼可在 GitHub 上找到。 深入瞭解 Azure Databricks 上的 RStudio Server。
ML Spark 套件、Java 和 Scala 程式庫的變更
下列套件已升級。 有些版本已升級為與 Apache Spark 3.0 相容的 SNAPSHOT
版本:
- graphframes: 0.7.0-db1-spark2.4 -> 0.8.0-db2-spark3.0
- spark-tensorflow-connector: 1.15.0 (Scala 2.11) -> 1.15.0 (Scala 2.12)
- xgboost4j 和 xgboost4j-spark:0.90 -> 1.0.0
- mleap-databricks-runtime: 0.17.0-4882dc3 (SNAPSHOT)
下列套件已移除:
- TensorFlow (Java)
- TensorFrames
- 適用於 Apache Spark 的深度學習管線 (Python 中提供 HorovodRunner)
已新增 conda 和 pip 命令以支援筆記本範圍的 Python 程式庫 (公開預覽)
從 Databricks Runtime 7.0 ML 開始,您可以使用 %pip
和 %conda
命令來管理筆記本工作階段中安裝的 Python 程式庫。
您也可以使用這些命令來建立筆記本的自訂環境,並在筆記本之間重現此環境。
若要開啟這項功能,請在叢集設定中設定 Spark 組態 spark.databricks.conda.condaMagic.enabled true
。
如需詳細資訊,請參閱筆記本範圍的 Python 程式庫。
已取代和不支援的功能
Databricks Runtime 7.0 ML 不支援資料表存取控制。 如果您需要資料表存取控制,建議您使用 Databricks Runtime 7.0。
已知問題
- 如果您要以 mleap 格式記錄 MLlib 模型,當
sample_input
引數傳遞至mlflow.spark.log_model
時,其會失敗並出現 AttributeError。 此問題是由 API 變更為 mleap 所造成。 若要解決此問題,請升級至 MLflow 1.9.0。 您可以使用筆記本範圍的 Python 程式庫來安裝 MLflow 1.9.0。
系統環境
如下所示,Databricks Runtime 7.0 ML 中的系統環境與 Databricks Runtime 7.0 有所不同:
- DBUtils:Databricks Runtime ML 不包含程式庫公用程式 (dbutils.library) (舊版)。
您可以改用
%pip
與%conda
命令。 請參閱筆記本範圍的 Python 程式庫。 - 針對 GPU 叢集,包含下列 NVIDIA GPU 程式庫:
- CUDA 10.1 Update 2
- cuDNN 7.6.5
- NCCL 2.7.3
- TensorRT 6.0.1
程式庫
下列各節列出 Databricks Runtime 7.0 ML 中,與 Databricks Runtime 7.0 所包含程式庫有所不同的程式庫。
本節內容:
頂層程式庫
Databricks Runtime 7.0 ML 包含下列頂層程式庫:
- GraphFrames
- Horovod 及 HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Python 程式庫
Databricks Runtime 7.0 ML 使用 Conda 進行 Python 套件管理,並包含許多熱門 ML 套件。 下一節將說明 Databricks Runtime 7.0 ML 的 Conda 環境。
CPU 叢集上的 Python
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_1
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2020.1.1=0
- cachetools=4.1.0=py_1
- certifi=2020.4.5.1=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.3.0=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.8=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb2=2.0.6=py_0
- gitpython=3.0.5=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py37_0
- jedi=0.14.1=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.9.4=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_0
- ninja=1.9.0=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1g=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.5.2=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.7=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py37_0
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_0
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.5.0=py3.7_cpu_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap2=2.0.5=py37_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.6.0=py37_cpu
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- databricks-cli==0.11.0
- diskcache==4.1.0
- docker==4.2.1
- gorilla==0.3.0
- horovod==0.19.1
- hyperopt==0.2.4.db1
- keras-preprocessing==1.1.2
- mleap==0.16.0
- mlflow==1.8.0
- opt-einsum==3.2.1
- petastorm==0.9.2
- pyarrow==0.15.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- sparkdl==2.1.0-db1
- tensorboard==2.2.2
- tensorboard-plugin-wit==1.6.0.post3
- tensorflow-cpu==2.2.0
- tensorflow-estimator==2.2.0
- termcolor==1.1.0
- xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml
GPU 叢集上的 Python
name: databricks-ml-gpu
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_1
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2020.1.1=0
- cachetools=4.1.0=py_1
- certifi=2020.4.5.2=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.3.0=py_0
- configparser=3.7.4=py37_0
- cryptography=2.8=py37h1ba5d50_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb2=2.0.6=py_0
- gitpython=3.0.5=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py37_0
- jedi=0.14.1=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.9.4=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_0
- ninja=1.9.0=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1g=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.5.2=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.7=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py37_0
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_0
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.5.0=py3.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap2=2.0.5=py37_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.6.0=py37_cu101
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- databricks-cli==0.11.0
- diskcache==4.1.0
- docker==4.2.1
- gorilla==0.3.0
- horovod==0.19.1
- hyperopt==0.2.4.db1
- keras-preprocessing==1.1.2
- mleap==0.16.0
- mlflow==1.8.0
- opt-einsum==3.2.1
- petastorm==0.9.2
- pyarrow==0.15.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- sparkdl==2.1.0-db1
- tensorboard==2.2.2
- tensorboard-plugin-wit==1.6.0.post3
- tensorflow-estimator==2.2.0
- tensorflow-gpu==2.2.0
- termcolor==1.1.0
- xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml-gpu
包含 Python 模組的 Spark 套件
Spark 封裝 | Python 模組 | 版本 |
---|---|---|
graphframes | graphframes | 0.8.0-db2-spark3.0 |
R 程式庫
R 程式庫與 Databricks Runtime 7.0 搶鮮版 (Beta) 中的 R 程式庫相同。
Java 和 Scala 程式庫 (Scala 2.12 叢集)
除了 Databricks Runtime 7.0 中的 Java 和 Scala 程式庫之外,Databricks Runtime 7.0 ML 還包含下列 JAR:
群組識別碼 | 成品識別碼 | 版本 |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.0-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.0.0 |
ml.dmlc | xgboost4j_2.12 | 1.0.0 |
org.mlflow | mlflow-client | 1.8.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |