適用於 ML 的 Databricks Runtime 6.4 (EoS)
注意
針對此 Databricks Runtime 版本的支援已結束。 如需了解終止支援日期,請參閱終止支援歷程記錄。 如需所有支援的 Databricks Runtime 版本,請參閱 Databricks Runtime 版本資訊版本和相容性 (機器翻譯)。
Databricks 於 2020 年 2 月發行此版本。
適用於機器學習的 Databricks Runtime 6.4 提供以 Databricks Runtime 6.4 (EoS) 為基礎的機器學習和資料科學現成環境。 Databricks Runtime ML 含有許多熱門的機器學習程式庫,包括 TensorFlow、PyTorch、Keras 和 XGBoost。 其也支援使用 Horovod 的分散式深度學習訓練。
如需詳細資訊,包括建立 Databricks Runtime ML 叢集的指示,請參閱 Databricks 上的 AI 和機器學習 (英文)。
新功能
Databricks Runtime 6.4 ML 是以 Databricks Runtime 6.4 為基礎而建置。 如需 Databricks Runtime 6.4 新增功能的相關資訊,請參閱 Databricks Runtime 6.4 (EoS) 版本資訊。
改善
棄用項目
- 獨立
keras
套件已被取代,將在即將推出的適用於 ML 的 Databricks Runtime 主要版本中移除。 Databricks 建議您改用tensorflow.keras
。 pymongo
套件已被取代,將在即將推出的適用於 ML 的 Databricks Runtime 主要版本中移除。
已更新機器學習程式庫
- PyTorch:1.3.1 至 1.4.0
- Horovod:0.18.2 至 1.19.0
系統環境
如下所示,Databricks Runtime 6.4 ML 中的系統環境與 Databricks Runtime 6.4 有所不同:
- DBUtils:不包含程式庫公用程式 (dbutils.library) (舊版)。
- 針對 GPU 叢集,包含下列 NVIDIA GPU 程式庫:
- CUDA 10.0
- cuDNN 7.6.4
- NCCL 2.4.8
程式庫
下列各節列出 Databricks Runtime 6.4 ML 中,與 Databricks Runtime 6.4 所包含程式庫有所不同的程式庫。
本節內容:
頂層程式庫
Databricks Runtime 6.4 ML 包含下列頂層程式庫:
- GraphFrames
- Horovod 及 HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Python 程式庫
Databricks Runtime 6.4 ML 使用 Conda 進行 Python 套件管理,並包含許多熱門 ML 套件。 下一節將說明 Databricks Runtime 6.4 ML 的 Conda 環境。
CPU 叢集上的 Python
name: databricks-ml
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=2.0=cpu_0
- _tflow_select=2.3.0=mkl
- absl-py=0.9.0=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.6.1=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipykernel=5.1.0=py37h39e3cac_0
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.2.4=py37_0
- jupyter_core=4.4.0=py37_0
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=he6710b0_1
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37he6710b0_1
- py-xgboost-cpu=0.90=py37_1
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.4.0=py3.7_cpu_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- pyzmq=18.0.0=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=mkl_py37hc5fbf04_0
- tensorflow-base=1.15.0+db2=mkl_py37h2ae1e84_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-mkl=1.15.0+db2=h4fcabd2_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.5.0=py37_cpu
- tornado=6.0.2=py37h7b6447c_0
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.1
- deprecated==1.2.7
- docker==4.2.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.19.0
- hyperopt==0.2.2.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.5.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml
GPU 叢集上的 Python
name: databricks-ml-gpu
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=1.0=gpu_0
- _tflow_select=2.1.0=gpu
- absl-py=0.9.0=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cryptography=2.6.1=py37h1ba5d50_0
- cudatoolkit=10.0.130=0
- cudnn=7.6.4=cuda10.0_0
- cupti=10.0.130=0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipykernel=5.1.0=py37h39e3cac_0
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.2.4=py37_0
- jupyter_core=4.4.0=py37_0
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=h688424c_0
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37h688424c_0
- py-xgboost-gpu=0.90=py37h28bbb66_0
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.4.0=py3.7_cuda10.0.130_cudnn7.6.3_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- pyzmq=18.0.0=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=gpu_py37h9fd0ff8_0
- tensorflow-base=1.15.0+db2=gpu_py37hd56f5dd_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-gpu=1.15.0+db2=h0d30ee6_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.5.0=py37_cu100
- tornado=6.0.2=py37h7b6447c_0
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.1
- deprecated==1.2.7
- docker==4.2.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.19.0
- hyperopt==0.2.2.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.5.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml-gpu
包含 Python 模組的 Spark 套件
Spark 封裝 | Python 模組 | 版本 |
---|---|---|
graphframes | graphframes | 0.7.0-db1-spark2.4 |
spark-deep-learning | sparkdl | 1.5.0-db12-spark2.4 |
tensorframes | tensorframes | 0.8.2-s_2.11 |
R 程式庫
R 程式庫與 Databricks Runtime 6.4 中的 R 程式庫相同。
Java 和 Scala 程式庫 (Scala 2.11 叢集)
除了 Databricks Runtime 6.4 中的 Java 和 Scala 程式庫之外,Databricks Runtime 6.4 ML 還包含下列 JAR:
群組識別碼 | 成品識別碼 | 版本 |
---|---|---|
com.databricks | spark-deep-learning | 1.5.0-db12-spark2.4 |
com.typesafe.akka | akka-actor_2.11 | 2.3.11 |
ml.combust.mleap | mleap-databricks-runtime_2.11 | 0.15.0 |
ml.dmlc | xgboost4j | 0.90 |
ml.dmlc | xgboost4j-spark | 0.90 |
org.graphframes | graphframes_2.11 | 0.7.0-db1-spark2.4 |
org.mlflow | mlflow-client | 1.4.0 |
org.tensorflow | libtensorflow | 1.15.0 |
org.tensorflow | libtensorflow_jni | 1.15.0 |
org.tensorflow | spark-tensorflow-connector_2.11 | 1.15.0 |
org.tensorflow | tensorflow | 1.15.0 |
org.tensorframes | tensorframes | 0.8.2-s_2.11 |