
OAuth Integration Guide for Cloud-Based Partners

Authors : Databricks Technology Partner Team
Last updated : Sep 27, 2024

Introduction
OAuth Overview

OAuth User-to-Machine (U2M)
OAuth Machine-to-Machine (M2M)

Design[UI] Connector for Databricks in ISV Product/Application
Personal Access Token (PAT) Authentication
OAuth Authentication

Getting Started
Prerequisites
OAuth U2M

Register OAuth Application
Implement OAuth Authorization Code flow
Create a DBSQL connection with a DBSQL driver and access token
Refreshing token

OAuth M2M
Create service principal and service principal secret
Create a DBSQL connection with a DBSQL driver

OAuth integration in the customers' accounts/workspaces
OAuth U2M
OAuth M2M

Best Practices
Persistence/caching of the tokens

Appendix I: DatabricksWorkspace-level OAuth Endpoints
Appendix II: Databricks Account-level OAuth Endpoints
Appendix III: OAuth Support in DBSQL Drivers
Appendix IV: Links to sample code

1



Introduction
This document provides detailed instructions for integrating your cloud-based application with
Databricks using OAuth. It is specifically tailored for partners using Databricks DBSQL drivers.

OAuth Overview
OAuth is a widely accepted industry standard for authorization. This guide focuses on two primary
OAuth scenarios: interactive mode or OAuth User-to-Machine (U2M) and Machine-to-Machine
(M2M).

OAuth User-to-Machine (U2M)
It is also known as the 3-legged OAuth and OAuth Authorization Code Flow (defined in OAuth 2.0
RFC 6749, section 4.1). The "three legs" refer to the interactions between the user, the partner
application, and the Databricks OAuth endpoint.

● Use Case: This flow is suitable for the partner applications that need to access Databricks
services on behalf of users. U2M interactions are essential for data scientists, engineers,
and analysts who use the Databricks platform for data processing, analysis, andmachine
learning tasks.

● Interaction flow

2

https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.1


It is also known as the 3-legged OAuth and OAuth Authorization Code Flow (defined in OAuth 2.0
RFC 6749, section 4.1). The "three legs" refer to the interactions between the user, the partner
application, and the Databricks OAuth endpoint.

A typical user-facing OAuth experience in a SaaS application is:
1. A user logs in to the partner’s website.
2. The user selects Databricks as the data source, upon connection, the user is redirected to

Databricks’ login page.
3. After successfully logging in with Databricks, the partner application receives the access

token and refresh token from Databricks via the callback registered in step (2).
4. The partner application uses the access token to connect to Databricks SQL or clusters.

The partner application should store the refresh token, which will be used to renew the
refresh token itself, and also get a new access token to maintain authenticated
connectivity to Databricks.

OAuth Machine-to-Machine (M2M)

It is also known as the 2-legged OAuth and OAuth Client Credentials Flow (defined in OAuth 2.0 RFC
6749, section 4.4). The "two legs" refer to the direct interaction between the partner application (or
DBSQL driver) and Databricks OAuth endpoint.

● Use Case: M2M interactions involve automated systems, services, or applications
communicating with the Databricks platformwithout direct human intervention. This
typically includes tasks like automating data ingestion, triggering data processing pipelines
or synchronizing data between systems. M2M interactions are commonly used in scenarios
where multiple systems or applications need to work together to achieve a desired
outcome, such as ETL pipelines, data monitoring, and orchestration of complex workflows.

● Interaction flow

A typical user-facing OAuth experience in a SaaS application using the M2Mmechanism is:
1. A user logs in to the partner’s website.

3

https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/rfc6749#section-4.4


2. The user selects Databricks as the data source. The partner connects to Databricks using
the pre-defined service principal and client secrets. The user does not perform explicit
login or authentication operations for Databricks.

Design[UI] Connector for Databricks in ISV Product/Application

When designing a connector to connect to Databricks using OAuth or Personal Access Tokens
(PAT), you'll need to include several key fields. Whether you support OAuth U2M or/and M2M
depends on your use case.

Here are the essential fields for each authenticationmethod:

Personal Access Token (PAT) Authentication

For PAT authentication, you'll need the following fields:
● Hostname orWorkspace URL: The hostname for the workspace or the URL of your

Databricks workspace (e.g., https://dbc-a1b2c3-d4e5.cloud.databricks.com).
● Personal Access Token: The token generated from the Databricks workspace.
● HTTP Path: The HTTP path to the Databricks SQL warehouse or Compute (optional,

depending on your use case).

OAuth Authentication

For OAuth authentication, you'll need these fields:
● Hostname orWorkspace URL: The hostname for the workspace or the URL of your

Databricks workspace (e.g., https://dbc-a1b2c3-d4e5.cloud.databricks.com).
● HTTP Path: The HTTP path to the Databricks SQL warehouse or Compute (optional,

depending on your use case).
● Connection type: Per-User (U2M) or Service-Principal (M2M). This selection by the end user

allows the connector to correctly choose the U2M or M2M OAuth flow (under the hood)
● Redirect URL:

○ U2M Partner needs to mention the URL to be used in the Client Registration
○ M2M: You don’t need a Redirect URL

● Client ID: The ID of the OAuth application registered in Databricks.
● Client Secret: The secret generated for the OAuth application/Service-principle.
● Fields that can be set asAdvanced configuration

○ Consider adding fields for additional JDBC parameters or custom key-value pairs
○ Token Expiry: (Optional) If there is a need for non-default token expiry.

● OAuth EndPoint: Either WorkSpace(optional) or Account Level.

4

https://dbc-a1b2c3-d4e5.cloud.databricks.com
Dan Zuckerberg
@prasad.kona@databricks.com @ki this needs to be "and" not "or". Partners are pointing this out to me as why they only need to implement one of these options.

Prasad Kona
opps.. will update it to use and



○ ForWorkspace Level: This can be auto-generated using the hostname or
workspace URL. Please refer to the Appendix-I for WorkSpace-related endpoints

○ ForAccount Level: Databricks Account URL needs to be provided. Please refer to
Appendix-II for Account-related endpoints

Getting Started

Prerequisites
Before you begin, ensure you have the following:

● An active Databricks account and workspace
● The admin access to your Databricks account
● [OAuth U2M] IDP Integration is in place with the user either synced or created in Databricks

OAuth U2M

Register OAuth Application
You can contact Databricks to create a default Databricks OAuth application or you can register an
OAuth application for U2M in your account by following the steps:

1. Login to Databricks Account Console
○ AWS: https://accounts.cloud.databricks.com
○ Azure: https://accounts.azuredatabricks.net
○ GCP: https://accounts.gcp.databricks.com

2. Goto Settings | App connections
3. Click “Add connection”
4. Enter the application name
5. Enter the Redirect URLs, which should be the OAuth callback endpoint of your cloud

application, see Implement OAuth callback endpoint in the application
6. Select “All APIs” in the “Access scopes” if your application needs to access other

Databricks non-SQL APIs, otherwise leave as default
7. Click “Add” to create your OAuth application

5

https://accounts.cloud.databricks.com
https://accounts.azuredatabricks.net
https://accounts.gcp.databricks.com


8. A dialog “Connection created” will popup, please copy the “Client ID” and “Client Secret” in
the dialog and store them somewhere as you won’t be able to see the “Client Secret” again

Notes:
● The following scopes are automatically granted to the application.

○ openid, email, profile: Required to generate the ID token.
○ o�ine_access: Required to generate refresh tokens.

● It only registers the application in your account. You have to ask customers to register your
application in their Databrick accounts if they want to use your application.

Implement OAuth Authorization Code flow
A cloud-based partner application will need to implement the OAuth U2M flow (see above) to
acquire an access token, that can then be used with the DBSQL driver.

To enhance security, we use PKCE (Proof Key for Code Exchange, defined in RFC 7636) in OAuth
U2M flow. PKCE provides an additional layer of security by requiring the use of a dynamically
generated code challenge and code verifier.

6

https://datatracker.ietf.org/doc/html/rfc7636


Java

Here are the steps of the implementation.

Step 1: Initiate OAuth authorization code flow

When the application needs to access Databricks using the DBSQL driver, it needs to initiate the
OAuth authorization code flow to acquire the access token.

Step 1.1 Generate state, code_verifier, and code_challenge
The application needs to generate the following values that will be used in the authorization code
flow:

● state: A randomly generated string to maintain the state between the request and callback,
protecting against CSRF attacks

● code_verifier: A high-entropy cryptographic random string used to generate the code
challenge

● code_challenge: A Base64-URL-encoded SHA256 hash of the code_verifier

Here’s an example of how to generate these values using Java:

import java.security.SecureRandom;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Base64;

public static String generateState() {
SecureRandom secureRandom = new SecureRandom();
byte[] stateBytes = new byte[32];
secureRandom.nextBytes(stateBytes);
return Base64.getUrlEncoder().withoutPadding().encodeToString(stateBytes);

}
public static String generateCodeVerifier() {

SecureRandom secureRandom = new SecureRandom();
byte[] codeVerifierBytes = new byte[32];
secureRandom.nextBytes(codeVerifierBytes);
return

Base64.getUrlEncoder().withoutPadding().encodeToString(codeVerifierBytes);
}

public static String generateCodeChallenge(String codeVerifier) throws
NoSuchAlgorithmException {

MessageDigest digest = MessageDigest.getInstance("SHA-256");
byte[] hash = digest.digest(codeVerifier.getBytes());
return Base64.getUrlEncoder().withoutPadding().encodeToString(hash);

}

7



Unset

Step 1.2 Direct the user to the authorization endpoint
To initiate the flow, the application should direct the user (browser) to the Databricks OAuth
authorization endpoint: https://<databricks workspace host>/odic/v1/authorizewith the following
query parameters:

● response_type: code
● client_id: client ID of the application created in Register OAuth Application
● redirect_uri: OAuth callback endpoint of the partner application, see Implement OAuth

callback endpoint in the application
● scope:

○ sql o�ine_access: Use this by default
○ all-apis o�ine_access: Use this if your application needs to access Databricks

non-SQL endpoint
○ sql o�ine_access openid email profile: Use this if your application also needs to get

an OAuth ID token that contains Databricks username, email, first and last name,
and Databricks User ID. For example, some applications may want to validate the ID
token to confirm the user’s identity or access the user’s profile (first and last name)
in the token.

● state: state generated in step 1.1
● code_challenge: code challenge generated in step 1.1
● code_challenge_method: S256

The user will be redirected to this endpoint to login and grant permission. After the user’s
authorization, the user will be redirected to redirect_uriwith the authentication code and state
parameters: <redirect_uri>?code=<authorization code>&state=<state>

Step 2: Implement the OAuth callback endpoint in your application

To handle the authorization code redirect request from Databricks OAuth server, you need to
implement an OAuth callback endpoint in your application and ensure this endpoint is accessible
from the user andmatches the Redirect URL of the OAuth application registered in Databricks.

Here is an example of an OAuth callback endpoint: https://yourapp.com/oauth/callback

Here is the recommended implementation of the callback endpoint:
1. Validate the state parameter in the request matches the state generated in step 1.1,
2. Send a POST request to Databricks OAuth token endpoint as below

POST https://<databricks workspace host>/odic/v1/token
Content-Type: application/x-www-form-urlencoded

8



JavaScript

grant_type=authorization_code
&code=AUTHORIZATION_CODE
&redirect_uri=YOUR_REDIRECT_URI
&client_id=YOUR_CLIENT_ID
&client_secret=YOUR_CLIENT_SECRET
&code_verifier=YOUR_CODE_VERIFIER

Parameters:
● grant_type: authorization_code
● code: the code parameter in the redirect (callback) request
● redirect_uri: URI of this OAuth callback endpoint
● client_id: client ID of the application created in Register OAuth Application
● client_secret: client secret of the application created in Register OAuth Application
● code_verfier: the code verifier generated in step 1.1

Response to the token request is like the following:

{
"access_token": "<OAuth access token>",
"refresh_token": "<OAuth refresh token>",
"token_type":"Bearer",
"scope":"sql",
"expires_in":3600

}

If the scopes “openid email profile” are included in the authorization request, the response will also
include the ID token in the “id_token” field.

3. Get the access token, the refresh token; store the tokens along with the user session

Create a DBSQL connection with a DBSQL driver and access token
Pass the access token obtained in the above step to the DBSQL driver to create a DBSQL
connection as follows:

● JDBC Driver (2.6.22 version or above)

9



Unset

Unset

Unset

Java

jdbc:
databricks
://example.cloud.databricks.com:443/yourDatabricksHttpPath;AuthMech=11;Auth_Flo
w=0;Auth_AccessToken=YOUR_OAUTH_ACCESS_TOKEN

● ODBC Driver (2.7.5 version or above)

Host=<server-hostname>;Port=443;HTTPPath=<http-path>;AuthMech=11;Auth_Flow=0;

Auth_AccessToken=YOUR_OAUTH_ACCESS_TOKEN

Refreshing token
OAuth Access tokens are valid for a limited time (by default, 1 hour). For running new queries or for
handling long-running queries, the cloud-based partner application must refresh the token in their
business logic and set the new refreshed access token in the DBSQL driver.

Here is the recommended implementation of refreshing tokens.
1. Get the refresh token from the above token response
2. Send a POST request on Databricks OAuth token endpoint as below:

POST https://<databricks workspace host>/odic/v1/token
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token
&refresh_token=YOUR_REFRESH_TOKEN
&client_id=YOUR_CLIENT_ID

3. Get the access token from the response
4. Update the access token in the existing DBSQL driver connection as follows:

● JDBC driver

Connection.setClientInfo("Auth_AccessToken", "YOUR_NEW_ACCESS_TOKEN")

10



C/C++

Please note that as JDBC driver APIs are blocking the application may need to invoke the
connection#setClientInfo() API on a different thread. If the token is expected to be valid for the
time t, you can use a different thread which at time t/2 sets the refreshed OAuth access token to
the JDBC driver.

● ODBC driver

// Update the access token
char *credentials = "Auth_AccessToken=$(new token)"
SQLSetConnectAttr(dbc, 122, credentials, SQL_NTS); // 122 is Custom ODBC
property: SQL_ATTR_CREDENTIALS

// Refresh current connection
__int32 refreshMode = -1; // Refresh now
SQLSetConnectAttr(dbc, 123, reinterpret_cast<SQLPOINTER>(refreshMode),
SQL_IS_SMALLINT); // 123 is custom ODBC property: SQL_ATTR_REFRESH_CONNECTION

OAuth M2M

Create service principal and service principal secret
You need to create a Databrick service principal for your application M2M authentication. Here are
the steps.

1. Login to Databricks Account Console
○ AWS: https://accounts.cloud.databricks.com
○ Azure: https://accounts.azuredatabricks.net
○ GCP: https://accounts.gcp.databricks.com

2. Select User Management from the left navigation panel.
3. From the Service Principals tab, click onAdd service principal
4. (Azure only) Select “Databricksmanaged” under the “Management” section
5. Enter a name for the service principal and click onAdd.
6. Select the service principal you just created.
7. Click on Generate Secret.
8. Copy the Client ID and Secret from the pop-up window and store them somewhere as you

won’t be able to see the “Secret” again
9. Assign the service principal to the workspace, see the instruction
10. Grant the service principal with the corresponding unity catalog privileges of the

catalogs/schemas/tables which will be accessed by the application

11

https://accounts.cloud.databricks.com
https://accounts.azuredatabricks.net
https://accounts.gcp.databricks.com
https://docs.databricks.com/en/admin/users-groups/service-principals.html#assign-a-service-principal-to-a-workspace-using-the-account-console


Java

Create a DBSQL connection with a DBSQL driver
All the Databricks SQL drivers support OAuth M2M, you can create a DBSQL connection by passing
the service principal client ID and the secret to DBSQL drivers.

Example connection URLs

AuthMech=11;Auth_Flow=1;OAuth2ClientId=<custom_oauth_client_id>;OAuth2Secret=<s
ecret>;Auth_Scope=<default: sql>

OAuth integration in the customers' accounts/workspaces
The instruction in the Getting Started section only enables the OAuth integration in the partner
account, to make the partner application work with OAuth in every Databricks customer
account/workspace, the partner application needs to

● For OAuth U2M: Support customized/configurable OAuth redirect URI, Client ID per
tenant/customer

● For OAuth M2M: Support customized/configurable Service Principal Client ID/Secret per
tenant/customer

OAuth U2M
To enable the partner application OAuth U2M integration in the customer’s Databricks account, the
customer admin needs to:

1. Register OAuth application for the partner application, which is similar to the Registration
Application in the partner’s Databricks account

2. Store the client ID/Secret and redirect URI of the registered OAuth application in the
partner application via its UI or API

To support the above scenario, the partner application needs to:
1. Expose UI/API that lets the customer store the client ID/secret and redirect the URI of the

OAuth application registered in the Databricks
2. Store themappings between the client ID/secret and customer tenant/account in the

partner application
3. When initiating the OAuth authorization code flow or sending a token request, get the client

ID/secret and redirect uri for the current session context by reading the abovemappings
and passing them to the authorization request

12



OAuth M2M
To enable the partner application OAuth M2M integration in the customer’s Databricks account, the
customer admin needs to:

1. Create a service principal for the partner application, which is similar to Create Service
Principal in the partner’s Databricks account

2. Grant the required permissions (defined by the partner application) to the service principal
3. Store the service principal client ID and secret in the partner application via its UI or API

To support the above scenario, the partner application needs to:
1. Expose UI/API that lets customer store service principal client ID/secret in the partner

application
2. Store themappings between the service principal client ID/secret and customer

tenant/account in the partner application
3. Dynamically pass the service principal client ID/secret to the DBSQL driver

Best Practices

Persistence/caching of the tokens
The OAuth refresh token is long-lived. The user’s OAuth refresh token should be persisted/cached
in the business logic of the cloud-based partner application to ensure the user does not need to
repeat the OAuth U2M re-login.

Cloud-based applications are typically used by multiple users simultaneously. Hence, the
application should be able to persist OAuth refresh token per application user or session. For
example, the user's OAuth tokens can be persisted on the cloud-based service side linked to their
session.

One proposed persistence is to scope tokens such that for each (Databricks-workspace-host, user)
tuple we store tokens independently.

13



Appendix I: DatabricksWorkspace-level OAuth Endpoints

Description Endpoint URL

OAuthWell-know
configuration endpoint

https://{databricks-host}/oidc/.well-known/openid-configuration

OAuth Token Endpoint https://{databricks-host}/oidc/v1/token

OAuth Authorization Endpoint https://{databricks-host}/oidc/v1/authorize

Appendix II: Databricks Account-level OAuth Endpoints

Description Endpoint URL

Azure OAuthWell-know
configuration endpoint

https://accounts.azuredatabricks.net/oidc/accounts/<Databricks-
AccountId>/.well-known/openid-configuration

AWS OAuthWell-know
configuration endpoint

https://accounts.cloud.databricks.com/oidc/accounts/<Databrick
s-AccountId>/.well-known/openid-configuration

GCP OAuthWell-know
configuration endpoint

https://accounts.gcp.databricks.com/oidc/accounts/<Databricks-
AccountId>/.well-known/openid-configuration

OAuth Authorization Endpoint https://<Cloud-Specifc-URL>/oidc/accounts/<Databricks-Account
Id>/v1/authorize

OAuth Token Endpoint https://<Cloud-Specifc-URL>/oidc/accounts/<Databricks-Account
Id>/v1/token

Appendix III: OAuth Support in DBSQL Drivers

Driver Recommend versions
for OAuth Token (U2M)

Recommend versions
for OAuth M2M

14



JDBC Latest
(2.6.22minimal)

Latest
(2.6.22minimal)

ODBC Latest
(2.7.5 minimal)

Latest
(2.8.2 minimal)

Python Driver Latest
(2.1.1 minimal)

Latest
(2.5.0 minimal)

GoLang Driver Latest
(1.5.2 minimal)

Latest
(1.5.2 minimal)

NodeJS Driver Latest
(1.3.0 minimal)

Latest
(1.5.0 minimal)

Appendix IV: Links to sample code

Python Driver
https://github.com/databricks/databricks-sql-python/blob/main/examples/m2m_oauth.py

15

https://github.com/databricks/databricks-sql-python/blob/main/examples/m2m_oauth.py

