結構化輸出
結構化輸出會讓模型遵循您在推斷 API 呼叫中提供的 JSON 結構描述定義。 這與較舊的 JSON 模式功能相反,該功能保證會產生有效的 JSON,但無法確保嚴格遵循提供的結構描述。 建議使用結構化輸出來呼叫函式、擷取結構化資料,以及組建複雜的多步驟工作流程。
注意
- 攜帶您自己的數據案例不支援目前結構化輸出。
支援的模型
o1
版本:2024-12-17
gpt-4o-mini
版本:2024-07-18
gpt-4o
版本:2024-08-06
API 支援
API 版本 2024-08-01-preview
首次新增對結構化輸出的支援。 其可在最新的預覽 API 以及最新的 GA API 中使用: 2024-10-21
。
開始使用
您可以使用 Pydantic
以 Python 定義物件結構描述。 根據您執行的 OpenAI 版本和Pydantic
連結庫,您可能需要升級至較新版本。 這些範例是針對 openai 1.42.0
和 pydantic 2.8.2
進行測試。
pip install openai pydantic --upgrade
如果您不熟悉使用 Microsoft Entra ID 進行驗證,請參閱 如何使用 Microsoft Entra ID 驗證來設定 Azure OpenAI 服務。
from pydantic import BaseModel
from openai import AzureOpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
azure_ad_token_provider=token_provider,
api_version="2024-10-21"
)
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
],
response_format=CalendarEvent,
)
event = completion.choices[0].message.parsed
print(event)
print(completion.model_dump_json(indent=2))
輸出
name='Science Fair' date='Friday' participants=['Alice', 'Bob']
{
"id": "chatcmpl-A1EUP2fAmL4SeB1lVMinwM7I2vcqG",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"message": {
"content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}",
"refusal": null,
"role": "assistant",
"function_call": null,
"tool_calls": [],
"parsed": {
"name": "Science Fair",
"date": "Friday",
"participants": [
"Alice",
"Bob"
]
}
}
}
],
"created": 1724857389,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion",
"service_tier": null,
"system_fingerprint": "fp_1c2eaec9fe",
"usage": {
"completion_tokens": 27,
"prompt_tokens": 32,
"total_tokens": 59
}
}
透過結構化輸出呼叫函式
可以透過提供 strict: true
,使用單一參數來允許結構化輸出用於函式呼叫。
注意
平行函式呼叫不支援結構化輸出。 當使用結構化輸出時,將 parallel_tool_calls
設定為 false
。
from enum import Enum
from typing import Union
from pydantic import BaseModel
import openai
from openai import AzureOpenAI
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-10-21"
)
class GetDeliveryDate(BaseModel):
order_id: str
tools = [openai.pydantic_function_tool(GetDeliveryDate)]
messages = []
messages.append({"role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user."})
messages.append({"role": "user", "content": "Hi, can you tell me the delivery date for my order #12345?"})
response = client.chat.completions.create(
model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
messages=messages,
tools=tools
)
print(response.choices[0].message.tool_calls[0].function)
print(response.model_dump_json(indent=2))
支援的結構描述與限制
Azure OpenAI 的結構化輸出支援與 OpenAI 相同的 JSON 結構描述子集。
支援的類型
- String
- 數值
- 布林值
- 整數
- Object
- 陣列
- 列舉
- anyOf
注意
根物件不能是 anyOf
類型。
所有欄位都必須是必要項目
所有欄位或函式參數都必須納入必要項目。 在下列範例中,location
和 unit
都是在 "required": ["location", "unit"]
下指定的。
{
"name": "get_weather",
"description": "Fetches the weather in the given location",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for"
},
"unit": {
"type": "string",
"description": "The unit to return the temperature in",
"enum": ["F", "C"]
}
},
"additionalProperties": false,
"required": ["location", "unit"]
}
如有需要,可以使用具有 null
的聯合類型來模擬選擇性參數。 在此範例中,使用了下列程式行來達成:"type": ["string", "null"],
。
{
"name": "get_weather",
"description": "Fetches the weather in the given location",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for"
},
"unit": {
"type": ["string", "null"],
"description": "The unit to return the temperature in",
"enum": ["F", "C"]
}
},
"additionalProperties": false,
"required": [
"location", "unit"
]
}
}
巢狀項目深度
結構描述最多可以有總計 100 個物件屬性,最多五個巢狀項目層級
一律必須在物件中設定 additionalProperties: false
此屬性控制物件是否可以擁有在 JSON 結構描述中未定義的額外索引鍵/值組。 若要使用結構化輸出,您必須將此值設定為 false。
索引鍵排序
結構化輸出的排序方式與提供的結構描述相同。 若要變更輸出順序,請修改您在推斷要求中傳送的結構描述順序。
不支援的類型專屬關鍵字
類型 | 不支援的關鍵字 |
---|---|
String | minlength maxLength pattern format |
數字 | minimum maximum multipleOf |
物件 | patternProperties unevaluatedProperties propertyNames minProperties maxProperties |
陣列 | unevaluatedItems contains minContains maxContains minItems maxItems uniqueItems |
使用 anyOf 的巢狀結構描述必須遵守整體 JSON 結構描述子集
支援的 anyOf
結構描述範例:
{
"type": "object",
"properties": {
"item": {
"anyOf": [
{
"type": "object",
"description": "The user object to insert into the database",
"properties": {
"name": {
"type": "string",
"description": "The name of the user"
},
"age": {
"type": "number",
"description": "The age of the user"
}
},
"additionalProperties": false,
"required": [
"name",
"age"
]
},
{
"type": "object",
"description": "The address object to insert into the database",
"properties": {
"number": {
"type": "string",
"description": "The number of the address. Eg. for 123 main st, this would be 123"
},
"street": {
"type": "string",
"description": "The street name. Eg. for 123 main st, this would be main st"
},
"city": {
"type": "string",
"description": "The city of the address"
}
},
"additionalProperties": false,
"required": [
"number",
"street",
"city"
]
}
]
}
},
"additionalProperties": false,
"required": [
"item"
]
}
支援定義
支援的範例:
{
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"$ref": "#/$defs/step"
}
},
"final_answer": {
"type": "string"
}
},
"$defs": {
"step": {
"type": "object",
"properties": {
"explanation": {
"type": "string"
},
"output": {
"type": "string"
}
},
"required": [
"explanation",
"output"
],
"additionalProperties": false
}
},
"required": [
"steps",
"final_answer"
],
"additionalProperties": false
}
支援遞迴結構描述
使用 # 進行根遞迴的範例:
{
"name": "ui",
"description": "Dynamically generated UI",
"strict": true,
"schema": {
"type": "object",
"properties": {
"type": {
"type": "string",
"description": "The type of the UI component",
"enum": ["div", "button", "header", "section", "field", "form"]
},
"label": {
"type": "string",
"description": "The label of the UI component, used for buttons or form fields"
},
"children": {
"type": "array",
"description": "Nested UI components",
"items": {
"$ref": "#"
}
},
"attributes": {
"type": "array",
"description": "Arbitrary attributes for the UI component, suitable for any element",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "The name of the attribute, for example onClick or className"
},
"value": {
"type": "string",
"description": "The value of the attribute"
}
},
"additionalProperties": false,
"required": ["name", "value"]
}
}
},
"required": ["type", "label", "children", "attributes"],
"additionalProperties": false
}
}
明確遞迴的範例:
{
"type": "object",
"properties": {
"linked_list": {
"$ref": "#/$defs/linked_list_node"
}
},
"$defs": {
"linked_list_node": {
"type": "object",
"properties": {
"value": {
"type": "number"
},
"next": {
"anyOf": [
{
"$ref": "#/$defs/linked_list_node"
},
{
"type": "null"
}
]
}
},
"additionalProperties": false,
"required": [
"next",
"value"
]
}
},
"additionalProperties": false,
"required": [
"linked_list"
]
}