共用方式為


快速入門:偵測具名實體 (NER)

參考文件 | 更多樣本 | 套件 (NuGet) | 程式庫原始程式碼

使用此快速入門建立具名實體辨識 (NER) 應用程式與適用于 .NET 的用戶端程式庫。 在下列範例中,您將建立 C# 應用程式,以便識別文字中辨識的實體

提示

您可以使用 AI Studio 來嘗試摘要,而不需要撰寫程式代碼。

必要條件

設定

建立 Azure 資源

您必須部署 Azure 資源,才能使用下列程式碼範例。 此資源將包含金鑰和端點,供您用來驗證您傳送至語言服務的 API 呼叫。

  1. 使用下列連結,以透過 Azure 入口網站建立語言資源。 您必須使用 Azure 訂用帳戶進行登入。

  2. 在所出現的 [選取其他功能] 畫面上,選取 [繼續以建立您的資源]

    螢幕擷取畫面:顯示 Azure 入口網站中的其他功能選項。

  3. 在 [建立語言] 畫面中,提供下列資訊:

    詳細資料 描述
    訂用帳戶 資源將要建立關聯的訂用帳戶。 從下拉式功能表中選取您的 Azure 訂用帳戶。
    資源群組 資源群組是一個容器,當中會儲存您所建立的資源。 選取 [新建] 來建立新的資源群組。
    區域 語言資源的位置。 區域不同可能會依據您的實體位置而造成延遲,但不會影響您資源執行階段的可用性。 在本快速入門中,請選取您鄰近的可用區域,或選擇 [美國東部]
    名稱 語言資源的名稱。 此名稱也會用來建立端點 URL,供您的應用程式用來傳送 API 要求。
    定價層 語言資源的定價層。 您可以使用 [免費 F0] 層來試用服務,之後可升級至付費層以用於實際執行環境。

    螢幕擷取畫面:顯示在 Azure 入口網站建立資源的詳細資料。

  4. 請確定已核取 [負責任 AI 通知] 核取方塊。

  5. 選取頁面底部的 [檢閱 + 建立]

  6. 在所出現的畫面中,確定驗證已通過,且您已輸入正確的資訊。 然後選取建立

取得金鑰和端點

接下來,您將需要來自資源的金鑰與端點,以將應用程式連線至該 API。 您稍後會在快速入門中將金鑰和端點貼到程式碼中。

  1. 成功部署語言資源後,按一下 [後續步驟] 下的 [前往資源]

    螢幕擷取畫面:顯示部署資源之後的後續步驟。

  2. 在資源的畫面上,選取左側導覽功能表上的 [金鑰和端點]。 在下列步驟中,您將使用其中一個金鑰和端點。

    螢幕擷取畫面:顯示資源的金鑰和端點區段。

建立環境變數

您的應用程式必須經過驗證後,才能傳送 API 要求。 在生產環境中,請運用安全的方式來儲存和存取您的登入資訊。 在此範例中,您會在執行應用程式的本機電腦上將認證寫入環境變數。

若要設定語言資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。

  • 若要設定 LANGUAGE_KEY 環境變數,請將 your-key 取代為您資源的其中一個金鑰。
  • 若要設定 LANGUAGE_ENDPOINT 環境變數,請將 your-endpoint 取代為您資源的端點。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求 (英文)。

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

注意

如果您只需要存取目前執行中主控台的環境變數,您可以使用 set (而不是 setx) 來設定環境變數。

新增環境變數之後,您可能需要重新啟動任何需要讀取環境變數的執行中程式,包括主控台視窗。 例如,如果您使用 Visual Studio 做為編輯器,請在執行範例前重新啟動 Visual Studio。

建立新的 .NET Core 應用程式

使用 Visual Studio IDE,建立新的 .NET Core 主控台應用程式。 這會建立 "Hello World" 專案,內含單一 C# 來源檔案:program.cs。

以滑鼠右鍵按一下 [方案總管] 中的解決方案,然後選取 [管理 NuGet 套件],以安裝用戶端程式庫。 在開啟的封裝管理員中,選取 [瀏覽] 並搜尋 Azure.AI.TextAnalytics。 選取版本 5.2.0,然後 安裝。 您也可以使用套件管理員主控台

程式碼範例

將下列程式碼複製到 program.cs 檔案中,並執行該程式碼。

using Azure;
using System;
using Azure.AI.TextAnalytics;

namespace Example
{
    class Program
    {
        // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
        static string languageKey = Environment.GetEnvironmentVariable("LANGUAGE_KEY");
        static string languageEndpoint = Environment.GetEnvironmentVariable("LANGUAGE_ENDPOINT");

        private static readonly AzureKeyCredential credentials = new AzureKeyCredential(languageKey);
        private static readonly Uri endpoint = new Uri(languageEndpoint);
        
        // Example method for extracting named entities from text 
        static void EntityRecognitionExample(TextAnalyticsClient client)
        {
            var response = client.RecognizeEntities("I had a wonderful trip to Seattle last week.");
            Console.WriteLine("Named Entities:");
            foreach (var entity in response.Value)
            {
                Console.WriteLine($"\tText: {entity.Text},\tCategory: {entity.Category},\tSub-Category: {entity.SubCategory}");
                Console.WriteLine($"\t\tScore: {entity.ConfidenceScore:F2},\tLength: {entity.Length},\tOffset: {entity.Offset}\n");
            }
        }

        static void Main(string[] args)
        {
            var client = new TextAnalyticsClient(endpoint, credentials);
            EntityRecognitionExample(client);

            Console.Write("Press any key to exit.");
            Console.ReadKey();
        }

    }
}

輸出

Named Entities:
        Text: trip,     Category: Event,        Sub-Category:
                Score: 0.74,    Length: 4,      Offset: 18

        Text: Seattle,  Category: Location,     Sub-Category: GPE
                Score: 1.00,    Length: 7,      Offset: 26

        Text: last week,        Category: DateTime,     Sub-Category: DateRange
                Score: 0.80,    Length: 9,      Offset: 34

參考文件 | 更多樣本 | 套件 (Maven) | 程式庫原始程式碼

使用此快速入門,透過適用於 JAVA 的用戶端程式庫,以建立具名實體辨識 (NER) 應用程式。 在下列範例中,您將建立 JAVA 應用程式,以便識別文字中辨識的實體

必要條件

設定

建立 Azure 資源

您必須部署 Azure 資源,才能使用下列程式碼範例。 此資源將包含金鑰和端點,供您用來驗證您傳送至語言服務的 API 呼叫。

  1. 使用下列連結,以透過 Azure 入口網站建立語言資源。 您必須使用 Azure 訂用帳戶進行登入。

  2. 在所出現的 [選取其他功能] 畫面上,選取 [繼續以建立您的資源]

    螢幕擷取畫面:顯示 Azure 入口網站中的其他功能選項。

  3. 在 [建立語言] 畫面中,提供下列資訊:

    詳細資料 描述
    訂用帳戶 資源將要建立關聯的訂用帳戶。 從下拉式功能表中選取您的 Azure 訂用帳戶。
    資源群組 資源群組是一個容器,當中會儲存您所建立的資源。 選取 [新建] 來建立新的資源群組。
    區域 語言資源的位置。 區域不同可能會依據您的實體位置而造成延遲,但不會影響您資源執行階段的可用性。 在本快速入門中,請選取您鄰近的可用區域,或選擇 [美國東部]
    名稱 語言資源的名稱。 此名稱也會用來建立端點 URL,供您的應用程式用來傳送 API 要求。
    定價層 語言資源的定價層。 您可以使用 [免費 F0] 層來試用服務,之後可升級至付費層以用於實際執行環境。

    螢幕擷取畫面:顯示在 Azure 入口網站建立資源的詳細資料。

  4. 請確定已核取 [負責任 AI 通知] 核取方塊。

  5. 選取頁面底部的 [檢閱 + 建立]

  6. 在所出現的畫面中,確定驗證已通過,且您已輸入正確的資訊。 然後選取建立

取得金鑰和端點

接下來,您將需要來自資源的金鑰與端點,以將應用程式連線至該 API。 您稍後會在快速入門中將金鑰和端點貼到程式碼中。

  1. 成功部署語言資源後,按一下 [後續步驟] 下的 [前往資源]

    螢幕擷取畫面:顯示部署資源之後的後續步驟。

  2. 在資源的畫面上,選取左側導覽功能表上的 [金鑰和端點]。 在下列步驟中,您將使用其中一個金鑰和端點。

    螢幕擷取畫面:顯示資源的金鑰和端點區段。

建立環境變數

您的應用程式必須經過驗證後,才能傳送 API 要求。 在生產環境中,請運用安全的方式來儲存和存取您的登入資訊。 在此範例中,您會在執行應用程式的本機電腦上將認證寫入環境變數。

若要設定語言資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。

  • 若要設定 LANGUAGE_KEY 環境變數,請將 your-key 取代為您資源的其中一個金鑰。
  • 若要設定 LANGUAGE_ENDPOINT 環境變數,請將 your-endpoint 取代為您資源的端點。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求 (英文)。

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

注意

如果您只需要存取目前執行中主控台的環境變數,您可以使用 set (而不是 setx) 來設定環境變數。

新增環境變數之後,您可能需要重新啟動任何需要讀取環境變數的執行中程式,包括主控台視窗。 例如,如果您使用 Visual Studio 做為編輯器,請在執行範例前重新啟動 Visual Studio。

新增 用戶端程式庫

在您慣用的 IDE 或開發環境中建立 Maven 專案。 然後,在專案的 pom.xml 檔案中新增下列相依性。 您可以在線上找到其他建置工具的實作語法。

<dependencies>
     <dependency>
        <groupId>com.azure</groupId>
        <artifactId>azure-ai-textanalytics</artifactId>
        <version>5.2.0</version>
    </dependency>
</dependencies>

程式碼範例

建立名為 Example.java 的 Java 檔案。 開啟檔案,並複製下列程式碼。 然後執行程式碼。

import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;

public class Example {

    // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
    private static String languageKey = System.getenv("LANGUAGE_KEY");
    private static String languageEndpoint = System.getenv("LANGUAGE_ENDPOINT");

    public static void main(String[] args) {
        TextAnalyticsClient client = authenticateClient(languageKey, languageEndpoint);
        recognizeEntitiesExample(client);
    }
    // Method to authenticate the client object with your key and endpoint
    static TextAnalyticsClient authenticateClient(String key, String endpoint) {
        return new TextAnalyticsClientBuilder()
                .credential(new AzureKeyCredential(key))
                .endpoint(endpoint)
                .buildClient();
    }
    // Example method for recognizing entities in text
    static void recognizeEntitiesExample(TextAnalyticsClient client)
    {
        // The text that needs to be analyzed.
        String text = "I had a wonderful trip to Seattle last week.";
    
        for (CategorizedEntity entity : client.recognizeEntities(text)) {
            System.out.printf(
                "Recognized entity: %s, entity category: %s, entity sub-category: %s, score: %s, offset: %s, length: %s.%n",
                entity.getText(),
                entity.getCategory(),
                entity.getSubcategory(),
                entity.getConfidenceScore(),
                entity.getOffset(),
                entity.getLength());
        }
    }
}

輸出

Recognized entity: trip, entity category: Event, entity sub-category: null, score: 0.74, offset: 18, length: 4.
Recognized entity: Seattle, entity category: Location, entity sub-category: GPE, score: 1.0, offset: 26, length: 7.
Recognized entity: last week, entity category: DateTime, entity sub-category: DateRange, score: 0.8, offset: 34, length: 9.

參考文件 | 更多樣本 | 套件 (npm) | 程式庫原始程式碼

使用此快速入門建立具名實體辨識 (NER) 應用程式與適用于 Node.js 的用戶端程式庫。 在下列範例中,您會建立 JavaScript 應用程式,以便識別文字中辨識的實體

必要條件

設定

建立 Azure 資源

您必須部署 Azure 資源,才能使用下列程式碼範例。 此資源將包含金鑰和端點,供您用來驗證您傳送至語言服務的 API 呼叫。

  1. 使用下列連結,以透過 Azure 入口網站建立語言資源。 您必須使用 Azure 訂用帳戶進行登入。

  2. 在所出現的 [選取其他功能] 畫面上,選取 [繼續以建立您的資源]

    螢幕擷取畫面:顯示 Azure 入口網站中的其他功能選項。

  3. 在 [建立語言] 畫面中,提供下列資訊:

    詳細資料 描述
    訂用帳戶 資源將要建立關聯的訂用帳戶。 從下拉式功能表中選取您的 Azure 訂用帳戶。
    資源群組 資源群組是一個容器,當中會儲存您所建立的資源。 選取 [新建] 來建立新的資源群組。
    區域 語言資源的位置。 區域不同可能會依據您的實體位置而造成延遲,但不會影響您資源執行階段的可用性。 在本快速入門中,請選取您鄰近的可用區域,或選擇 [美國東部]
    名稱 語言資源的名稱。 此名稱也會用來建立端點 URL,供您的應用程式用來傳送 API 要求。
    定價層 語言資源的定價層。 您可以使用 [免費 F0] 層來試用服務,之後可升級至付費層以用於實際執行環境。

    螢幕擷取畫面:顯示在 Azure 入口網站建立資源的詳細資料。

  4. 請確定已核取 [負責任 AI 通知] 核取方塊。

  5. 選取頁面底部的 [檢閱 + 建立]

  6. 在所出現的畫面中,確定驗證已通過,且您已輸入正確的資訊。 然後選取建立

取得金鑰和端點

接下來,您將需要來自資源的金鑰與端點,以將應用程式連線至該 API。 您稍後會在快速入門中將金鑰和端點貼到程式碼中。

  1. 成功部署語言資源後,按一下 [後續步驟] 下的 [前往資源]

    螢幕擷取畫面:顯示部署資源之後的後續步驟。

  2. 在資源的畫面上,選取左側導覽功能表上的 [金鑰和端點]。 在下列步驟中,您將使用其中一個金鑰和端點。

    螢幕擷取畫面:顯示資源的金鑰和端點區段。

建立環境變數

您的應用程式必須經過驗證後,才能傳送 API 要求。 在生產環境中,請運用安全的方式來儲存和存取您的登入資訊。 在此範例中,您會在執行應用程式的本機電腦上將認證寫入環境變數。

若要設定語言資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。

  • 若要設定 LANGUAGE_KEY 環境變數,請將 your-key 取代為您資源的其中一個金鑰。
  • 若要設定 LANGUAGE_ENDPOINT 環境變數,請將 your-endpoint 取代為您資源的端點。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求 (英文)。

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

注意

如果您只需要存取目前執行中主控台的環境變數,您可以使用 set (而不是 setx) 來設定環境變數。

新增環境變數之後,您可能需要重新啟動任何需要讀取環境變數的執行中程式,包括主控台視窗。 例如,如果您使用 Visual Studio 做為編輯器,請在執行範例前重新啟動 Visual Studio。

建立新的 Node.js 應用程式

在主控台視窗 (例如 cmd、PowerShell 或 Bash) 中,為您的應用程式建立新的目錄,並瀏覽至該目錄。

mkdir myapp 

cd myapp

執行命令 npm init,以使用 package.json 檔案建立節點應用程式。

npm init

安裝用戶端程式庫

安裝 npm 套件:

npm install @azure/ai-language-text

程式碼範例

開啟檔案,並複製下列程式碼。 然後執行程式碼。

"use strict";

const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");

// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
const key = process.env.LANGUAGE_KEY;
const endpoint = process.env.LANGUAGE_ENDPOINT;

//an example document for entity recognition
const documents = [ "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC interpreters for the Altair 8800"];

//example of how to use the client library to recognize entities in a document.
async function main() {
    console.log("== NER sample ==");
  
    const client = new TextAnalysisClient(endpoint, new AzureKeyCredential(key));
  
    const results = await client.analyze("EntityRecognition", documents);
  
    for (const result of results) {
      console.log(`- Document ${result.id}`);
      if (!result.error) {
        console.log("\tRecognized Entities:");
        for (const entity of result.entities) {
          console.log(`\t- Entity ${entity.text} of type ${entity.category}`);
        }
      } else console.error("\tError:", result.error);
    }
  }

//call the main function
main().catch((err) => {
    console.error("The sample encountered an error:", err);
});

輸出

Document ID: 0
        Name: Microsoft         Category: Organization  Subcategory: N/A
        Score: 0.29
        Name: Bill Gates        Category: Person        Subcategory: N/A
        Score: 0.78
        Name: Paul Allen        Category: Person        Subcategory: N/A
        Score: 0.82
        Name: April 4, 1975     Category: DateTime      Subcategory: Date
        Score: 0.8
        Name: 8800      Category: Quantity      Subcategory: Number
        Score: 0.8
Document ID: 1
        Name: 21        Category: Quantity      Subcategory: Number
        Score: 0.8
        Name: Seattle   Category: Location      Subcategory: GPE
        Score: 0.25

參考文件 | 更多樣本 | 套件 (PyPi) | 程式庫原始程式碼

使用此快速入門,透過適用於 JAVA 的用戶端程式庫,以建立具名實體辨識 (Python) 應用程式。 在下列範例中,您會建立 Python 應用程式,以便識別文字中辨識的實體

必要條件

設定

安裝用戶端程式庫

安裝 Python 之後,您可以透過以下項目安裝用戶端程式庫:

pip install azure-ai-textanalytics==5.2.0

程式碼範例

建立新的 Python 檔案,並複製下列程式碼。 然後執行程式碼。

# This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
language_key = os.environ.get('LANGUAGE_KEY')
language_endpoint = os.environ.get('LANGUAGE_ENDPOINT')

from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

# Authenticate the client using your key and endpoint 
def authenticate_client():
    ta_credential = AzureKeyCredential(language_key)
    text_analytics_client = TextAnalyticsClient(
            endpoint=language_endpoint, 
            credential=ta_credential)
    return text_analytics_client

client = authenticate_client()

# Example function for recognizing entities from text
def entity_recognition_example(client):

    try:
        documents = ["I had a wonderful trip to Seattle last week."]
        result = client.recognize_entities(documents = documents)[0]

        print("Named Entities:\n")
        for entity in result.entities:
            print("\tText: \t", entity.text, "\tCategory: \t", entity.category, "\tSubCategory: \t", entity.subcategory,
                    "\n\tConfidence Score: \t", round(entity.confidence_score, 2), "\tLength: \t", entity.length, "\tOffset: \t", entity.offset, "\n")

    except Exception as err:
        print("Encountered exception. {}".format(err))
entity_recognition_example(client)

輸出

Named Entities:

    Text:    trip   Category:        Event  SubCategory:     None
    Confidence Score:        0.74   Length:          4      Offset:          18

    Text:    Seattle        Category:        Location       SubCategory:     GPE
    Confidence Score:        1.0    Length:          7      Offset:          26

    Text:    last week      Category:        DateTime       SubCategory:     DateRange
    Confidence Score:        0.8    Length:          9      Offset:          34

參考文件

使用此快速入門,以使用 REST API 傳送具名實體辨識 (NER) 要求。 在下列範例中,您將使用 cURL 來識別文字中已辨識的實體

必要條件

設定

建立 Azure 資源

您必須部署 Azure 資源,才能使用下列程式碼範例。 此資源將包含金鑰和端點,供您用來驗證您傳送至語言服務的 API 呼叫。

  1. 使用下列連結,以透過 Azure 入口網站建立語言資源。 您必須使用 Azure 訂用帳戶進行登入。

  2. 在所出現的 [選取其他功能] 畫面上,選取 [繼續以建立您的資源]

    螢幕擷取畫面:顯示 Azure 入口網站中的其他功能選項。

  3. 在 [建立語言] 畫面中,提供下列資訊:

    詳細資料 描述
    訂用帳戶 資源將要建立關聯的訂用帳戶。 從下拉式功能表中選取您的 Azure 訂用帳戶。
    資源群組 資源群組是一個容器,當中會儲存您所建立的資源。 選取 [新建] 來建立新的資源群組。
    區域 語言資源的位置。 區域不同可能會依據您的實體位置而造成延遲,但不會影響您資源執行階段的可用性。 在本快速入門中,請選取您鄰近的可用區域,或選擇 [美國東部]
    名稱 語言資源的名稱。 此名稱也會用來建立端點 URL,供您的應用程式用來傳送 API 要求。
    定價層 語言資源的定價層。 您可以使用 [免費 F0] 層來試用服務,之後可升級至付費層以用於實際執行環境。

    螢幕擷取畫面:顯示在 Azure 入口網站建立資源的詳細資料。

  4. 請確定已核取 [負責任 AI 通知] 核取方塊。

  5. 選取頁面底部的 [檢閱 + 建立]

  6. 在所出現的畫面中,確定驗證已通過,且您已輸入正確的資訊。 然後選取建立

取得金鑰和端點

接下來,您將需要來自資源的金鑰與端點,以將應用程式連線至該 API。 您稍後會在快速入門中將金鑰和端點貼到程式碼中。

  1. 成功部署語言資源後,按一下 [後續步驟] 下的 [前往資源]

    螢幕擷取畫面:顯示部署資源之後的後續步驟。

  2. 在資源的畫面上,選取左側導覽功能表上的 [金鑰和端點]。 在下列步驟中,您將使用其中一個金鑰和端點。

    螢幕擷取畫面:顯示資源的金鑰和端點區段。

建立環境變數

您的應用程式必須經過驗證後,才能傳送 API 要求。 在生產環境中,請運用安全的方式來儲存和存取您的登入資訊。 在此範例中,您會在執行應用程式的本機電腦上將認證寫入環境變數。

若要設定語言資源金鑰的環境變數,請開啟主控台視窗,並遵循作業系統和開發環境的指示進行。

  • 若要設定 LANGUAGE_KEY 環境變數,請將 your-key 取代為您資源的其中一個金鑰。
  • 若要設定 LANGUAGE_ENDPOINT 環境變數,請將 your-endpoint 取代為您資源的端點。

重要

如果您使用 API 金鑰,請將其安全地儲存在別處,例如 Azure Key Vault。 請勿在程式碼中直接包含 API 金鑰,且切勿公開張貼金鑰。

如需 AI 服務安全性的詳細資訊,請參閱驗證對 Azure AI 服務的要求 (英文)。

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

注意

如果您只需要存取目前執行中主控台的環境變數,您可以使用 set (而不是 setx) 來設定環境變數。

新增環境變數之後,您可能需要重新啟動任何需要讀取環境變數的執行中程式,包括主控台視窗。 例如,如果您使用 Visual Studio 做為編輯器,請在執行範例前重新啟動 Visual Studio。

使用範例要求本文來建立 JSON 檔案

在程式碼編輯器中,建立名為 test_ner_payload.json 的新檔案,並複製下列 JSON 範例。 在下一個步驟中,會將此範例要求傳送至 API。

{
    "kind": "EntityRecognition",
    "parameters": {
        "modelVersion": "latest"
    },
    "analysisInput":{
        "documents":[
            {
                "id":"1",
                "language": "en",
                "text": "I had a wonderful trip to Seattle last week."
            }
        ]
    }
}

test_ner_payload.json 儲存在電腦上的某個位置。 例如,您的桌面。

傳送具名實體辨識 API 要求

使用下列命令,透過您正在使用的程式來傳送 API 要求。 將命令複製到終端機,然後執行該命令。

parameter 描述
-X POST <endpoint> 指定用於存取 API 的端點。
-H Content-Type: application/json 用於傳送 JSON 資料的內容類型。
-H "Ocp-Apim-Subscription-Key:<key> 指定用於存取 API 的金鑰。
-d <documents> JSON,其中包含您想要傳送的文件。

C:\Users\<myaccount>\Desktop\test_ner_payload.json 取代為您在上一個步驟中所建立範例 JSON 要求檔案的位置。

命令提示字元

curl -X POST "%LANGUAGE_ENDPOINT%/language/:analyze-text?api-version=2022-05-01" ^
-H "Content-Type: application/json" ^
-H "Ocp-Apim-Subscription-Key: %LANGUAGE_KEY%" ^
-d "@C:\Users\<myaccount>\Desktop\test_ner_payload.json"

PowerShell

curl.exe -X POST $env:LANGUAGE_ENDPOINT/language/:analyze-text?api-version=2022-05-01 `
-H "Content-Type: application/json" `
-H "Ocp-Apim-Subscription-Key: $env:LANGUAGE_KEY" `
-d "@C:\Users\<myaccount>\Desktop\test_ner_payload.json"

JSON 回應

注意

  • 正式推出的 API 和目前的預覽 API 有不同的回應格式,請參閱正式推出以預覽 API 對應一文。
  • 預覽 API 可從 API 版本 2023-04-15-preview 取得。
{
	"kind": "EntityRecognitionResults",
	"results": {
		"documents": [{
			"id": "1",
			"entities": [{
				"text": "trip",
				"category": "Event",
				"offset": 18,
				"length": 4,
				"confidenceScore": 0.74
			}, {
				"text": "Seattle",
				"category": "Location",
				"subcategory": "GPE",
				"offset": 26,
				"length": 7,
				"confidenceScore": 1.0
			}, {
				"text": "last week",
				"category": "DateTime",
				"subcategory": "DateRange",
				"offset": 34,
				"length": 9,
				"confidenceScore": 0.8
			}],
			"warnings": []
		}],
		"errors": [],
		"modelVersion": "2021-06-01"
	}
}

清除資源

如果您想要清除和移除 Azure AI 服務訂用帳戶,則可以刪除資源或資源群組。 刪除資源群組也會刪除與其相關聯的任何其他資源。

下一步