活动协调器示例项目

活动协调器的此简易示例演示了如何在满足系统条件时利用该 API 在后台重新训练模型。

示例项目概述

以某一音乐编辑应用的情况为例。 此应用具有为用户请求提供服务的高优先级后台任务,例如将内容发布到云存储。 此外,还有支持用户交互的低优先级后台任务,例如提供自动建议以便在编辑时改进合成。 最后,在没有任何用户请求的情况下,有一组无需在任何特定时间执行的延迟任务,而这便是本示例中的焦点。 具体而言,我们希望在用户影响最小时定期重新训练建议模型。 我们可使用活动协调器 API 来实现此目的。

对于此场景,我们希望在不存在用户时重新训练模型。 此场景中的重新训练工作流同时也是 GPU 使用者,因此我们还希望在使用 GPU 的好时机来运行。 我们可使用活动协调器策略来指定这些要求。 活动协调器 API 将使用我们的策略来确定何时满足这些要求,并针对何时启动或停止运行我们的工作而发送通知。

在此情况下,GOOD 策略模板可满足我们的大部分需求,因为它会跟踪 CPU、内存、系统磁盘、功耗和用户空闲。 我们只需为 GPU 显式设置一个条件。 请务必牢记,即使工作负荷主要利用 GPU,执行活动仍会自然消耗 CPU、内存、磁盘和功耗。 我们对这些资源的影响也可能会在不同系统配置之间出现很大差异。 例如,更快的 GPU 可能会导致 CPU 花费更多时间为 GPU 提供数据,而这可能会导致将更多数据读取或保存到磁盘上。 此磁盘的速度也可能会以类似的方式影响 CPU 消耗。 通过配置我们影响的所有资源,便可确保不会在无意间干扰用户体验或降低系统性能。 此外,此工作自身已被分解为在小区块中执行,以便我们能充分响应协调通知,以免在所需条件的范围之外运行。

为了演示开发人员如何更改或降级策略,我们还添加了需重新进行训练以在 48 小时内完成的要求。 在前 24 小时(即,我们的软最后期限),我们会尝试运行理想的策略;而在最后 24 小时,我们则会降级为一个较低的策略。

示例项目代码

以下代码对应音乐编辑示例应用程序。 它利用活动协调器 API 执行后台任务,如概述中所述。

#include <chrono>
#include <mutex>
#include <condition_variable>
#include <Windows.h>
#include <ActivityCoordinator.h>
#include <wil/resource.h>

// To use ActivityCoordinator, we must link to the OneCoreUAP library.

#pragma comment(lib, "OneCoreUAP.lib")

using namespace std;
using namespace chrono;
using namespace wil;

// Declare RAII wrappers for the Activity Coordinator policy and subscription.
// These behave like traditional smart pointers and will call their associated
// API cleanup functions when they go out of scope.

typedef wil::unique_any<
        ACTIVITY_COORDINATOR_POLICY,
        decltype(&DestroyActivityCoordinatorPolicy),
        DestroyActivityCoordinatorPolicy>
    unique_policy;

typedef wil::unique_any<
        ACTIVITY_COORDINATOR_SUBSCRIPTION,
        decltype(&UnsubscribeActivityCoordinatorPolicy),
        UnsubscribeActivityCoordinatorPolicy>
    unique_subscription;

struct WORKER_CONTEXT {
    mutex ContextLock;
    unique_threadpool_work Worker;
    bool ShouldRun;
    bool IsRunning;
    bool IsComplete;
    std::condition_variable CompletionSignal;
};

_Requires_lock_held_(workerContext->ContextLock)
void
ResumeWorker(
    _In_ WORKER_CONTEXT* workerContext
    )
{
    workerContext->ShouldRun = true;
    if (!workerContext->IsRunning && !workerContext->IsComplete) {

        // No active workers, so start a new one.

        workerContext->IsRunning = true;
        SubmitThreadpoolWork(workerContext->Worker.get());
    }
}

void
DeferredWorkEventCallback(
    _In_ ACTIVITY_COORDINATOR_NOTIFICATION notificationType,
    _In_ void* callbackContext
    )
{
    WORKER_CONTEXT* workerContext = reinterpret_cast<WORKER_CONTEXT*>(callbackContext);

    // Use this callback thread to dispatch notifications to a worker thread
    // about whether or not it should process the next chunk of deferred work.

    // Note: Do not use this thread to perform your activity's workload.

    lock_guard<mutex> scopedLock(workerContext->ContextLock);
    switch (notificationType) {
    case ACTIVITY_COORDINATOR_NOTIFICATION_RUN:

        // Allow deferred work to be processed.

        ResumeWorker(workerContext);

        break;

    case ACTIVITY_COORDINATOR_NOTIFICATION_STOP:

        // Stop processing deferred work.

        workerContext->ShouldRun = false;

        break;

    default:
        FAIL_FAST();
        break;
    }
}

bool
TrainNextModelChunk(
    )
{
    //
    // Returns true if all work is completed, or false if there is more work.
    //

    return false;
}

void
DeferredModelTrainingWorker(
    _Inout_ PTP_CALLBACK_INSTANCE callbackInstance,
    _Inout_opt_ PVOID callbackContext,
    _Inout_ PTP_WORK work
    )
{
    // Threadpool callback instance and work are not needed for this sample.

    UNREFERENCED_PARAMETER(callbackInstance);
    UNREFERENCED_PARAMETER(work);

    WORKER_CONTEXT* workerContext = reinterpret_cast<WORKER_CONTEXT*>(callbackContext);
    bool workComplete = false;

    // Keep processing work until being told to stop or all work has been completed.

    while (true) {
        {
            lock_guard<mutex> scopedLock(workerContext->ContextLock);

            if (workComplete) {
                workerContext->IsComplete = true;
            }

            if (!workerContext->ShouldRun || workerContext->IsComplete) {
                workerContext->IsRunning = false;
                break;
            }
        }

        // TrainNextModelChunk returns true when there is no more work to do.

        workComplete = TrainNextModelChunk();
    }

    workerContext->CompletionSignal.notify_all();
}

int
__cdecl
wmain(
    )
{
    WORKER_CONTEXT workerContext;
    workerContext.ShouldRun = false;
    workerContext.IsRunning = false;
    workerContext.IsComplete = false;

    // Create the worker that will be started by our subscription callback.

    workerContext.Worker.reset(CreateThreadpoolWork(
        DeferredModelTrainingWorker,
        &workerContext,
        nullptr));
    RETURN_LAST_ERROR_IF_NULL(workerContext.Worker);

    // Allocate a policy suited for tasks that are best run when unlikely
    // to cause impact to the user or system performance.

    unique_policy policy;
    RETURN_IF_FAILED(CreateActivityCoordinatorPolicy(
        ACTIVITY_COORDINATOR_POLICY_TEMPLATE_GOOD,
        &policy));

    // The model training in this sample consumes GPU.
    // The GOOD policy template doesn't currently include the GPU resource. We
    // therefore customize the policy to include good GPU conditions to minimize
    // the impact of running our work.

    RETURN_IF_FAILED(SetActivityCoordinatorPolicyResourceCondition(
        policy.get(),
        ACTIVITY_COORDINATOR_RESOURCE_GPU,
        ACTIVITY_COORDINATOR_CONDITION_GOOD));

    // Subscribe to the policy for coordination notifications.

    unique_subscription subscription;
    RETURN_IF_FAILED(SubscribeActivityCoordinatorPolicy(
        policy.get(),
        DeferredWorkEventCallback,
        &workerContext,
        &subscription));;

    // Destroy the policy because we no longer need it.

    policy.reset();

    // We want our task to complete within 48h, so we allocate 24h under our
    // ideal policy and before falling back to a downgraded policy.

    bool workerCompleted;

    {
        unique_lock<mutex> scopedLock(workerContext.ContextLock);
        workerCompleted = workerContext.CompletionSignal.wait_for(
            scopedLock,
            hours(24),
            [&workerContext] { return workerContext.IsComplete; });
    }

    if (workerCompleted) {

        // Since our work is complete, we should clean up our subscription by
        // unsubscribing. This would normally be handled quietly by our RAII
        // types, but we release them explicitly to demonstrate API flow for
        // developers manually managing resources.

        subscription.reset();
        return S_OK;
    }

    // We passed our soft deadline, so downgrade the policy and wait the
    // remaining 24h until our hard deadline has been reached. Since
    // Subscriptions and policies are independent of each other, we need to
    // create a new subscription with our downgraded policy to receive
    // notifications based on its configuration.
    // 
    // The downgraded policy uses medium conditions for all needed resources.
    // This gives us the best chance to run while helping to prevent us from
    // critically degrading the user experience, which we are more likely to do
    // when falling back to manual execution.

    RETURN_IF_FAILED(CreateActivityCoordinatorPolicy(
        ACTIVITY_COORDINATOR_POLICY_TEMPLATE_MEDIUM,
        &policy));

    RETURN_IF_FAILED(SetActivityCoordinatorPolicyResourceCondition(
        policy.get(),
        ACTIVITY_COORDINATOR_RESOURCE_GPU,
        ACTIVITY_COORDINATOR_CONDITION_MEDIUM));

    subscription.reset();
    RETURN_IF_FAILED(SubscribeActivityCoordinatorPolicy(
        policy.get(),
        DeferredWorkEventCallback,
        &workerContext,
        &subscription));

    {
        unique_lock<mutex> scopedLock(workerContext.ContextLock);
        workerCompleted = workerContext.CompletionSignal.wait_for(
            scopedLock,
            hours(24),
            [&workerContext] { return workerContext.IsComplete; });
    }

    // We passed our deadline, so unsubscribe and manually resume our task.

    subscription.reset();
    ResumeWorker(&workerContext);

    // We destroyed our subscription, so we wait indefinitely for completion as
    // there's nothing to pause execution of our task.

    unique_lock<mutex> scopedLock(workerContext.ContextLock);
    workerContext.CompletionSignal.wait(
        scopedLock,
        [&workerContext] { return workerContext.IsComplete; });

    return S_OK;
}

活动协调器 API 概述

活动协调器 API 和术语

选择正确的活动协调器策略