练习 - 估算实际问题的资源

已完成

Shor 因子分解算法是最著名的量子算法之一。 它可以指数加速任何已知经典因子算法。

经典加密使用物理或数学手段(如计算难度)来完成任务。 常用的加密协议是 Rivest-Shamir-Adleman (RSA) 方案,该方案基于使用经典计算机对质数进行因式分解的难度假设。

Shor 算法意味着足够大的量子计算机可以破解公钥加密。 估计 Shor 算法所需的资源对于评估这些类型的加密方案的漏洞非常重要。

在以下练习中,你将计算 2,048 位整数的因式分解的资源估算值。 对于此应用程序,将直接通过预计算的逻辑资源估算值来计算物理资源估算值。 对于容许误差预算,将使用 $\epsilon = 1/3$。

编写 Shor 算法

  1. 在 Visual Studio Code 中,选择“视图 > 命令面板”,然后选择“创建:新 Jupyter Notebook”。

  2. 将笔记本另存为 ShorRE.ipynb

  3. 在第一个单元格中,导入 qsharp 包:

    import qsharp
    
  4. 使用 Microsoft.Quantum.ResourceEstimation 命名空间定义 Shor 整数分解算法的缓存优化版本。 添加新单元格,然后粘贴并复制以下代码:

    %%qsharp
    open Microsoft.Quantum.Arrays;
    open Microsoft.Quantum.Canon;
    open Microsoft.Quantum.Convert;
    open Microsoft.Quantum.Diagnostics;
    open Microsoft.Quantum.Intrinsic;
    open Microsoft.Quantum.Math;
    open Microsoft.Quantum.Measurement;
    open Microsoft.Quantum.Unstable.Arithmetic;
    open Microsoft.Quantum.ResourceEstimation;
    
    operation RunProgram() : Unit {
        let bitsize = 31;
    
        // When choosing parameters for `EstimateFrequency`, make sure that
        // generator and modules are not co-prime
        let _ = EstimateFrequency(11, 2^bitsize - 1, bitsize);
    }
    
    
    // In this sample we concentrate on costing the `EstimateFrequency`
    // operation, which is the core quantum operation in Shors algorithm, and
    // we omit the classical pre- and post-processing.
    
    /// # Summary
    /// Estimates the frequency of a generator
    /// in the residue ring Z mod `modulus`.
    ///
    /// # Input
    /// ## generator
    /// The unsigned integer multiplicative order (period)
    /// of which is being estimated. Must be co-prime to `modulus`.
    /// ## modulus
    /// The modulus which defines the residue ring Z mod `modulus`
    /// in which the multiplicative order of `generator` is being estimated.
    /// ## bitsize
    /// Number of bits needed to represent the modulus.
    ///
    /// # Output
    /// The numerator k of dyadic fraction k/2^bitsPrecision
    /// approximating s/r.
    operation EstimateFrequency(
        generator : Int,
        modulus : Int,
        bitsize : Int
    )
    : Int {
        mutable frequencyEstimate = 0;
        let bitsPrecision =  2 * bitsize + 1;
    
        // Allocate qubits for the superposition of eigenstates of
        // the oracle that is used in period finding.
        use eigenstateRegister = Qubit[bitsize];
    
        // Initialize eigenstateRegister to 1, which is a superposition of
        // the eigenstates we are estimating the phases of.
        // We first interpret the register as encoding an unsigned integer
        // in little endian encoding.
        ApplyXorInPlace(1, eigenstateRegister);
        let oracle = ApplyOrderFindingOracle(generator, modulus, _, _);
    
        // Use phase estimation with a semiclassical Fourier transform to
        // estimate the frequency.
        use c = Qubit();
        for idx in bitsPrecision - 1..-1..0 {
            within {
                H(c);
            } apply {
                // `BeginEstimateCaching` and `EndEstimateCaching` are the operations
                // exposed by Azure Quantum Resource Estimator. These will instruct
                // resource counting such that the if-block will be executed
                // only once, its resources will be cached, and appended in
                // every other iteration.
                if BeginEstimateCaching("ControlledOracle", SingleVariant()) {
                    Controlled oracle([c], (1 <<< idx, eigenstateRegister));
                    EndEstimateCaching();
                }
                R1Frac(frequencyEstimate, bitsPrecision - 1 - idx, c);
            }
            if MResetZ(c) == One {
                set frequencyEstimate += 1 <<< (bitsPrecision - 1 - idx);
            }
        }
    
        // Return all the qubits used for oracles eigenstate back to 0 state
        // using Microsoft.Quantum.Intrinsic.ResetAll.
        ResetAll(eigenstateRegister);
    
        return frequencyEstimate;
    }
    
    /// # Summary
    /// Interprets `target` as encoding unsigned little-endian integer k
    /// and performs transformation |k⟩ ↦ |gᵖ⋅k mod N ⟩ where
    /// p is `power`, g is `generator` and N is `modulus`.
    ///
    /// # Input
    /// ## generator
    /// The unsigned integer multiplicative order ( period )
    /// of which is being estimated. Must be co-prime to `modulus`.
    /// ## modulus
    /// The modulus which defines the residue ring Z mod `modulus`
    /// in which the multiplicative order of `generator` is being estimated.
    /// ## power
    /// Power of `generator` by which `target` is multiplied.
    /// ## target
    /// Register interpreted as LittleEndian which is multiplied by
    /// given power of the generator. The multiplication is performed modulo
    /// `modulus`.
    internal operation ApplyOrderFindingOracle(
        generator : Int, modulus : Int, power : Int, target : Qubit[]
    )
    : Unit
    is Adj + Ctl {
        // The oracle we use for order finding implements |x⟩ ↦ |x⋅a mod N⟩. We
        // also use `ExpModI` to compute a by which x must be multiplied. Also
        // note that we interpret target as unsigned integer in little-endian
        // encoding by using the `LittleEndian` type.
        ModularMultiplyByConstant(modulus,
                                    ExpModI(generator, power, modulus),
                                    target);
    }
    
    /// # Summary
    /// Performs modular in-place multiplication by a classical constant.
    ///
    /// # Description
    /// Given the classical constants `c` and `modulus`, and an input
    /// quantum register (as LittleEndian) |𝑦⟩, this operation
    /// computes `(c*x) % modulus` into |𝑦⟩.
    ///
    /// # Input
    /// ## modulus
    /// Modulus to use for modular multiplication
    /// ## c
    /// Constant by which to multiply |𝑦⟩
    /// ## y
    /// Quantum register of target
    internal operation ModularMultiplyByConstant(modulus : Int, c : Int, y : Qubit[])
    : Unit is Adj + Ctl {
        use qs = Qubit[Length(y)];
        for (idx, yq) in Enumerated(y) {
            let shiftedC = (c <<< idx) % modulus;
            Controlled ModularAddConstant([yq], (modulus, shiftedC, qs));
        }
        ApplyToEachCA(SWAP, Zipped(y, qs));
        let invC = InverseModI(c, modulus);
        for (idx, yq) in Enumerated(y) {
            let shiftedC = (invC <<< idx) % modulus;
            Controlled ModularAddConstant([yq], (modulus, modulus - shiftedC, qs));
        }
    }
    
    /// # Summary
    /// Performs modular in-place addition of a classical constant into a
    /// quantum register.
    ///
    /// # Description
    /// Given the classical constants `c` and `modulus`, and an input
    /// quantum register (as LittleEndian) |𝑦⟩, this operation
    /// computes `(x+c) % modulus` into |𝑦⟩.
    ///
    /// # Input
    /// ## modulus
    /// Modulus to use for modular addition
    /// ## c
    /// Constant to add to |𝑦⟩
    /// ## y
    /// Quantum register of target
    internal operation ModularAddConstant(modulus : Int, c : Int, y : Qubit[])
    : Unit is Adj + Ctl {
        body (...) {
            Controlled ModularAddConstant([], (modulus, c, y));
        }
        controlled (ctrls, ...) {
            // We apply a custom strategy to control this operation instead of
            // letting the compiler create the controlled variant for us in which
            // the `Controlled` functor would be distributed over each operation
            // in the body.
            //
            // Here we can use some scratch memory to save ensure that at most one
            // control qubit is used for costly operations such as `AddConstant`
            // and `CompareGreaterThenOrEqualConstant`.
            if Length(ctrls) >= 2 {
                use control = Qubit();
                within {
                    Controlled X(ctrls, control);
                } apply {
                    Controlled ModularAddConstant([control], (modulus, c, y));
                }
            } else {
                use carry = Qubit();
                Controlled AddConstant(ctrls, (c, y + [carry]));
                Controlled Adjoint AddConstant(ctrls, (modulus, y + [carry]));
                Controlled AddConstant([carry], (modulus, y));
                Controlled CompareGreaterThanOrEqualConstant(ctrls, (c, y, carry));
            }
        }
    }
    
    /// # Summary
    /// Performs in-place addition of a constant into a quantum register.
    ///
    /// # Description
    /// Given a non-empty quantum register |𝑦⟩ of length 𝑛+1 and a positive
    /// constant 𝑐 < 2ⁿ, computes |𝑦 + c⟩ into |𝑦⟩.
    ///
    /// # Input
    /// ## c
    /// Constant number to add to |𝑦⟩.
    /// ## y
    /// Quantum register of second summand and target; must not be empty.
    internal operation AddConstant(c : Int, y : Qubit[]) : Unit is Adj + Ctl {
        // We are using this version instead of the library version that is based
        // on Fourier angles to show an advantage of sparse simulation in this sample.
    
        let n = Length(y);
        Fact(n > 0, "Bit width must be at least 1");
    
        Fact(c >= 0, "constant must not be negative");
        Fact(c < 2 ^ n, $"constant must be smaller than {2L ^ n}");
    
        if c != 0 {
            // If c has j trailing zeroes than the j least significant bits
            // of y will not be affected by the addition and can therefore be
            // ignored by applying the addition only to the other qubits and
            // shifting c accordingly.
            let j = NTrailingZeroes(c);
            use x = Qubit[n - j];
            within {
                ApplyXorInPlace(c >>> j, x);
            } apply {
                IncByLE(x, y[j...]);
            }
        }
    }
    
    /// # Summary
    /// Performs greater-than-or-equals comparison to a constant.
    ///
    /// # Description
    /// Toggles output qubit `target` if and only if input register `x`
    /// is greater than or equal to `c`.
    ///
    /// # Input
    /// ## c
    /// Constant value for comparison.
    /// ## x
    /// Quantum register to compare against.
    /// ## target
    /// Target qubit for comparison result.
    ///
    /// # Reference
    /// This construction is described in [Lemma 3, arXiv:2201.10200]
    internal operation CompareGreaterThanOrEqualConstant(c : Int, x : Qubit[], target : Qubit)
    : Unit is Adj+Ctl {
        let bitWidth = Length(x);
    
        if c == 0 {
            X(target);
        } elif c >= 2 ^ bitWidth {
            // do nothing
        } elif c == 2 ^ (bitWidth - 1) {
            ApplyLowTCNOT(Tail(x), target);
        } else {
            // normalize constant
            let l = NTrailingZeroes(c);
    
            let cNormalized = c >>> l;
            let xNormalized = x[l...];
            let bitWidthNormalized = Length(xNormalized);
            let gates = Rest(IntAsBoolArray(cNormalized, bitWidthNormalized));
    
            use qs = Qubit[bitWidthNormalized - 1];
            let cs1 = [Head(xNormalized)] + Most(qs);
            let cs2 = Rest(xNormalized);
    
            within {
                for i in IndexRange(gates) {
                    (gates[i] ? ApplyAnd | ApplyOr)(cs1[i], cs2[i], qs[i]);
                }
            } apply {
                ApplyLowTCNOT(Tail(qs), target);
            }
        }
    }
    
    /// # Summary
    /// Internal operation used in the implementation of GreaterThanOrEqualConstant.
    internal operation ApplyOr(control1 : Qubit, control2 : Qubit, target : Qubit) : Unit is Adj {
        within {
            ApplyToEachA(X, [control1, control2]);
        } apply {
            ApplyAnd(control1, control2, target);
            X(target);
        }
    }
    
    internal operation ApplyAnd(control1 : Qubit, control2 : Qubit, target : Qubit)
    : Unit is Adj {
        body (...) {
            CCNOT(control1, control2, target);
        }
        adjoint (...) {
            H(target);
            if (M(target) == One) {
                X(target);
                CZ(control1, control2);
            }
        }
    }
    
    
    /// # Summary
    /// Returns the number of trailing zeroes of a number
    ///
    /// ## Example
    /// ```qsharp
    /// let zeroes = NTrailingZeroes(21); // = NTrailingZeroes(0b1101) = 0
    /// let zeroes = NTrailingZeroes(20); // = NTrailingZeroes(0b1100) = 2
    /// ```
    internal function NTrailingZeroes(number : Int) : Int {
        mutable nZeroes = 0;
        mutable copy = number;
        while (copy % 2 == 0) {
            set nZeroes += 1;
            set copy /= 2;
        }
        return nZeroes;
    }
    
    /// # Summary
    /// An implementation for `CNOT` that when controlled using a single control uses
    /// a helper qubit and uses `ApplyAnd` to reduce the T-count to 4 instead of 7.
    internal operation ApplyLowTCNOT(a : Qubit, b : Qubit) : Unit is Adj+Ctl {
        body (...) {
            CNOT(a, b);
        }
    
        adjoint self;
    
        controlled (ctls, ...) {
            // In this application this operation is used in a way that
            // it is controlled by at most one qubit.
            Fact(Length(ctls) <= 1, "At most one control line allowed");
    
            if IsEmpty(ctls) {
                CNOT(a, b);
            } else {
                use q = Qubit();
                within {
                    ApplyAnd(Head(ctls), a, q);
                } apply {
                    CNOT(q, b);
                }
            }
        }
    
        controlled adjoint self;
    }
    

估算 Shor 算法

现在使用默认假设来估算 RunProgram 操作的物理资源。 添加新单元格,然后粘贴并复制以下代码:

result = qsharp.estimate("RunProgram()")
result

qsharp.estimate 函数创建一个结果对象,可用于显示整体物理资源计数的表。 可以通过折叠包含更多信息的组来检查成本详细信息。

例如,折叠“逻辑量子比特参数”组以查看代码距离为 21,物理量子比特数为 882。

逻辑量子比特参数
QEC 方案 surface_code
码距 21
物理量子比特 882
逻辑周期时间 8 毫秒
逻辑量子比特错误率 3.00E-13
交叉预制 0.03
错误更正阈值 0.01
逻辑周期时间公式 (4 * twoQubitGateTime + 2 * oneQubitMeasurementTime) * codeDistance
物理量子比特公式 2 * codeDistance * codeDistance

提示

对于更紧凑的输出表,可以使用 result.summary

空间图

用于算法和 T 工厂的物理量子比特的分布可能会影响算法的设计。 可以使用 qsharp-widgets 包来可视化此分布,以便更好地了解算法的预计空间要求。

from qsharp_widgets import SpaceChart
SpaceChart(result)

在此示例中,运行算法所需的物理量子比特数为 829766,其中 196686 个是算法量子比特,633080 个是 T 工厂量子比特。

显示资源估算器空间图的屏幕截图。

比较不同量子比特技术的资源估算值

使用 Azure Quantum 资源估算器可以运行目标参数的多个配置并比较结果。 如果要比较不同量子比特模型、QEC 方案或错误预算的成本,这会非常有用。

还可以使用 EstimatorParams 对象构建估算参数的列表。

from qsharp.estimator import EstimatorParams, QubitParams, QECScheme, LogicalCounts

labels = ["Gate-based µs, 10⁻³", "Gate-based µs, 10⁻⁴", "Gate-based ns, 10⁻³", "Gate-based ns, 10⁻⁴", "Majorana ns, 10⁻⁴", "Majorana ns, 10⁻⁶"]

params = EstimatorParams(6)
params.error_budget = 0.333
params.items[0].qubit_params.name = QubitParams.GATE_US_E3
params.items[1].qubit_params.name = QubitParams.GATE_US_E4
params.items[2].qubit_params.name = QubitParams.GATE_NS_E3
params.items[3].qubit_params.name = QubitParams.GATE_NS_E4
params.items[4].qubit_params.name = QubitParams.MAJ_NS_E4
params.items[4].qec_scheme.name = QECScheme.FLOQUET_CODE
params.items[5].qubit_params.name = QubitParams.MAJ_NS_E6
params.items[5].qec_scheme.name = QECScheme.FLOQUET_CODE

qsharp.estimate("RunProgram()", params=params).summary_data_frame(labels=labels)
量子比特模型 逻辑量子比特 逻辑深度 T 状态 码距 T 工厂 T 工厂分数 物理量子比特 rQOPS 物理运行时
基于门的 µs,10⁻³ 223 3.64M 4.70M 17 13 40.54% 216.77k 21.86k 10 小时
基于门的 µs,10⁻⁴ 223 3.64M 4.70M 9 14 43.17% 63.57k 41.30k 5 小时
基于门的 ns,10⁻³ 223 3.64M 4.70M 17 16 69.08% 416.89k 32.79M 25 秒
基于门的 ns,10⁻⁴ 223 3.64M 4.70M 9 14 43.17% 63.57k 61.94M 13 秒
Majorana ns,10⁻⁴ 223 3.64M 4.70M 9 19 82.75% 501.48k 82.59M 10 秒
Majorana ns,10⁻⁶ 223 3.64M 4.70M 5 13 31.47% 42.96k 148.67M 5 秒

从逻辑资源计数中提取资源估计值

如果你已经知道操作的一些估算值,则资源估算器允许你将已知的估算值合并到程序的总成本中,以减少执行时间。 可以使用 LogicalCounts 类从预先计算的资源估算值中提取逻辑资源估算值。

选择“代码”添加新单元格,然后输入并运行以下代码:

logical_counts = LogicalCounts({
    'numQubits': 12581,
    'tCount': 12,
    'rotationCount': 12,
    'rotationDepth': 12,
    'cczCount': 3731607428,
    'measurementCount': 1078154040})

logical_counts.estimate(params).summary_data_frame(labels=labels)
量子比特模型 逻辑量子比特 逻辑深度 T 状态 码距 T 工厂 T 工厂分数 物理量子比特 物理运行时
基于门的 µs,10⁻³ 25481 1.2e+10 1.5e+10 27 13 0.6% 37.38M 6 年
基于门的 µs,10⁻⁴ 25481 1.2e+10 1.5e+10 13 14 0.8% 8.68M 3 年
基于门的 ns,10⁻³ 25481 1.2e+10 1.5e+10 27 15 1.3% 37.65M 2 天
基于门的 ns,10⁻⁴ 25481 1.2e+10 1.5e+10 13 18 1.2% 8.72M 18 小时
Majorana ns,10⁻⁴ 25481 1.2e+10 1.5e+10 15 15 1.3% 26.11M 15小时
Majorana ns,10⁻⁶ 25481 1.2e+10 1.5e+10 7 13 0.5% 6.25M 7 小时

结论

在最坏的情况下,使用基于门的 μs 量子比特(具有纳秒制操作时间的量子比特,例如超导量子比特)和表层 QEC 代码的量子计算机需要 6 年和 3738 万个量子比特才能使用 Shor 算法将 2048 位整数因式分解。

如果使用其他量子比特技术(例如基于门的 ns 离子量子比特和同一表层代码),量子比特的数量不会有太大变化,但在最坏的情况下,运行时变为两天,在乐观的情况下为 18 小时。 如果更改量子比特技术和 QEC 代码(例如,使用基于 Majorana 的量子比特),在最佳情况下,使用 Shor 算法将 2,048 位整数因式分解为包含 625 万个量子比特的数组可以在几小时内完成。

从试验中可以得出结论,使用 Majorana 量子比特和 Floquet QEC 代码是执行 Shor 算法和因式分解 2048 位整数的最佳选择。