练习 - 估算实际问题的资源
Shor 因子分解算法是最著名的量子算法之一。 它可以指数加速任何已知经典因子算法。
经典加密使用物理或数学手段(如计算难度)来完成任务。 常用的加密协议是 Rivest-Shamir-Adleman (RSA) 方案,该方案基于使用经典计算机对质数进行因式分解的难度假设。
Shor 算法意味着足够大的量子计算机可以破解公钥加密。 估计 Shor 算法所需的资源对于评估这些类型的加密方案的漏洞非常重要。
在以下练习中,你将计算 2,048 位整数的因式分解的资源估算值。 对于此应用程序,将直接通过预计算的逻辑资源估算值来计算物理资源估算值。 对于容许误差预算,将使用 $\epsilon = 1/3$。
编写 Shor 算法
在 Visual Studio Code 中,选择“视图 > 命令面板”,然后选择“创建:新 Jupyter Notebook”。
将笔记本另存为 ShorRE.ipynb。
在第一个单元格中,导入
qsharp
包:import qsharp
使用
Microsoft.Quantum.ResourceEstimation
命名空间定义 Shor 整数分解算法的缓存优化版本。 添加新单元格,然后粘贴并复制以下代码:%%qsharp open Microsoft.Quantum.Arrays; open Microsoft.Quantum.Canon; open Microsoft.Quantum.Convert; open Microsoft.Quantum.Diagnostics; open Microsoft.Quantum.Intrinsic; open Microsoft.Quantum.Math; open Microsoft.Quantum.Measurement; open Microsoft.Quantum.Unstable.Arithmetic; open Microsoft.Quantum.ResourceEstimation; operation RunProgram() : Unit { let bitsize = 31; // When choosing parameters for `EstimateFrequency`, make sure that // generator and modules are not co-prime let _ = EstimateFrequency(11, 2^bitsize - 1, bitsize); } // In this sample we concentrate on costing the `EstimateFrequency` // operation, which is the core quantum operation in Shors algorithm, and // we omit the classical pre- and post-processing. /// # Summary /// Estimates the frequency of a generator /// in the residue ring Z mod `modulus`. /// /// # Input /// ## generator /// The unsigned integer multiplicative order (period) /// of which is being estimated. Must be co-prime to `modulus`. /// ## modulus /// The modulus which defines the residue ring Z mod `modulus` /// in which the multiplicative order of `generator` is being estimated. /// ## bitsize /// Number of bits needed to represent the modulus. /// /// # Output /// The numerator k of dyadic fraction k/2^bitsPrecision /// approximating s/r. operation EstimateFrequency( generator : Int, modulus : Int, bitsize : Int ) : Int { mutable frequencyEstimate = 0; let bitsPrecision = 2 * bitsize + 1; // Allocate qubits for the superposition of eigenstates of // the oracle that is used in period finding. use eigenstateRegister = Qubit[bitsize]; // Initialize eigenstateRegister to 1, which is a superposition of // the eigenstates we are estimating the phases of. // We first interpret the register as encoding an unsigned integer // in little endian encoding. ApplyXorInPlace(1, eigenstateRegister); let oracle = ApplyOrderFindingOracle(generator, modulus, _, _); // Use phase estimation with a semiclassical Fourier transform to // estimate the frequency. use c = Qubit(); for idx in bitsPrecision - 1..-1..0 { within { H(c); } apply { // `BeginEstimateCaching` and `EndEstimateCaching` are the operations // exposed by Azure Quantum Resource Estimator. These will instruct // resource counting such that the if-block will be executed // only once, its resources will be cached, and appended in // every other iteration. if BeginEstimateCaching("ControlledOracle", SingleVariant()) { Controlled oracle([c], (1 <<< idx, eigenstateRegister)); EndEstimateCaching(); } R1Frac(frequencyEstimate, bitsPrecision - 1 - idx, c); } if MResetZ(c) == One { set frequencyEstimate += 1 <<< (bitsPrecision - 1 - idx); } } // Return all the qubits used for oracles eigenstate back to 0 state // using Microsoft.Quantum.Intrinsic.ResetAll. ResetAll(eigenstateRegister); return frequencyEstimate; } /// # Summary /// Interprets `target` as encoding unsigned little-endian integer k /// and performs transformation |k⟩ ↦ |gᵖ⋅k mod N ⟩ where /// p is `power`, g is `generator` and N is `modulus`. /// /// # Input /// ## generator /// The unsigned integer multiplicative order ( period ) /// of which is being estimated. Must be co-prime to `modulus`. /// ## modulus /// The modulus which defines the residue ring Z mod `modulus` /// in which the multiplicative order of `generator` is being estimated. /// ## power /// Power of `generator` by which `target` is multiplied. /// ## target /// Register interpreted as LittleEndian which is multiplied by /// given power of the generator. The multiplication is performed modulo /// `modulus`. internal operation ApplyOrderFindingOracle( generator : Int, modulus : Int, power : Int, target : Qubit[] ) : Unit is Adj + Ctl { // The oracle we use for order finding implements |x⟩ ↦ |x⋅a mod N⟩. We // also use `ExpModI` to compute a by which x must be multiplied. Also // note that we interpret target as unsigned integer in little-endian // encoding by using the `LittleEndian` type. ModularMultiplyByConstant(modulus, ExpModI(generator, power, modulus), target); } /// # Summary /// Performs modular in-place multiplication by a classical constant. /// /// # Description /// Given the classical constants `c` and `modulus`, and an input /// quantum register (as LittleEndian) |𝑦⟩, this operation /// computes `(c*x) % modulus` into |𝑦⟩. /// /// # Input /// ## modulus /// Modulus to use for modular multiplication /// ## c /// Constant by which to multiply |𝑦⟩ /// ## y /// Quantum register of target internal operation ModularMultiplyByConstant(modulus : Int, c : Int, y : Qubit[]) : Unit is Adj + Ctl { use qs = Qubit[Length(y)]; for (idx, yq) in Enumerated(y) { let shiftedC = (c <<< idx) % modulus; Controlled ModularAddConstant([yq], (modulus, shiftedC, qs)); } ApplyToEachCA(SWAP, Zipped(y, qs)); let invC = InverseModI(c, modulus); for (idx, yq) in Enumerated(y) { let shiftedC = (invC <<< idx) % modulus; Controlled ModularAddConstant([yq], (modulus, modulus - shiftedC, qs)); } } /// # Summary /// Performs modular in-place addition of a classical constant into a /// quantum register. /// /// # Description /// Given the classical constants `c` and `modulus`, and an input /// quantum register (as LittleEndian) |𝑦⟩, this operation /// computes `(x+c) % modulus` into |𝑦⟩. /// /// # Input /// ## modulus /// Modulus to use for modular addition /// ## c /// Constant to add to |𝑦⟩ /// ## y /// Quantum register of target internal operation ModularAddConstant(modulus : Int, c : Int, y : Qubit[]) : Unit is Adj + Ctl { body (...) { Controlled ModularAddConstant([], (modulus, c, y)); } controlled (ctrls, ...) { // We apply a custom strategy to control this operation instead of // letting the compiler create the controlled variant for us in which // the `Controlled` functor would be distributed over each operation // in the body. // // Here we can use some scratch memory to save ensure that at most one // control qubit is used for costly operations such as `AddConstant` // and `CompareGreaterThenOrEqualConstant`. if Length(ctrls) >= 2 { use control = Qubit(); within { Controlled X(ctrls, control); } apply { Controlled ModularAddConstant([control], (modulus, c, y)); } } else { use carry = Qubit(); Controlled AddConstant(ctrls, (c, y + [carry])); Controlled Adjoint AddConstant(ctrls, (modulus, y + [carry])); Controlled AddConstant([carry], (modulus, y)); Controlled CompareGreaterThanOrEqualConstant(ctrls, (c, y, carry)); } } } /// # Summary /// Performs in-place addition of a constant into a quantum register. /// /// # Description /// Given a non-empty quantum register |𝑦⟩ of length 𝑛+1 and a positive /// constant 𝑐 < 2ⁿ, computes |𝑦 + c⟩ into |𝑦⟩. /// /// # Input /// ## c /// Constant number to add to |𝑦⟩. /// ## y /// Quantum register of second summand and target; must not be empty. internal operation AddConstant(c : Int, y : Qubit[]) : Unit is Adj + Ctl { // We are using this version instead of the library version that is based // on Fourier angles to show an advantage of sparse simulation in this sample. let n = Length(y); Fact(n > 0, "Bit width must be at least 1"); Fact(c >= 0, "constant must not be negative"); Fact(c < 2 ^ n, $"constant must be smaller than {2L ^ n}"); if c != 0 { // If c has j trailing zeroes than the j least significant bits // of y will not be affected by the addition and can therefore be // ignored by applying the addition only to the other qubits and // shifting c accordingly. let j = NTrailingZeroes(c); use x = Qubit[n - j]; within { ApplyXorInPlace(c >>> j, x); } apply { IncByLE(x, y[j...]); } } } /// # Summary /// Performs greater-than-or-equals comparison to a constant. /// /// # Description /// Toggles output qubit `target` if and only if input register `x` /// is greater than or equal to `c`. /// /// # Input /// ## c /// Constant value for comparison. /// ## x /// Quantum register to compare against. /// ## target /// Target qubit for comparison result. /// /// # Reference /// This construction is described in [Lemma 3, arXiv:2201.10200] internal operation CompareGreaterThanOrEqualConstant(c : Int, x : Qubit[], target : Qubit) : Unit is Adj+Ctl { let bitWidth = Length(x); if c == 0 { X(target); } elif c >= 2 ^ bitWidth { // do nothing } elif c == 2 ^ (bitWidth - 1) { ApplyLowTCNOT(Tail(x), target); } else { // normalize constant let l = NTrailingZeroes(c); let cNormalized = c >>> l; let xNormalized = x[l...]; let bitWidthNormalized = Length(xNormalized); let gates = Rest(IntAsBoolArray(cNormalized, bitWidthNormalized)); use qs = Qubit[bitWidthNormalized - 1]; let cs1 = [Head(xNormalized)] + Most(qs); let cs2 = Rest(xNormalized); within { for i in IndexRange(gates) { (gates[i] ? ApplyAnd | ApplyOr)(cs1[i], cs2[i], qs[i]); } } apply { ApplyLowTCNOT(Tail(qs), target); } } } /// # Summary /// Internal operation used in the implementation of GreaterThanOrEqualConstant. internal operation ApplyOr(control1 : Qubit, control2 : Qubit, target : Qubit) : Unit is Adj { within { ApplyToEachA(X, [control1, control2]); } apply { ApplyAnd(control1, control2, target); X(target); } } internal operation ApplyAnd(control1 : Qubit, control2 : Qubit, target : Qubit) : Unit is Adj { body (...) { CCNOT(control1, control2, target); } adjoint (...) { H(target); if (M(target) == One) { X(target); CZ(control1, control2); } } } /// # Summary /// Returns the number of trailing zeroes of a number /// /// ## Example /// ```qsharp /// let zeroes = NTrailingZeroes(21); // = NTrailingZeroes(0b1101) = 0 /// let zeroes = NTrailingZeroes(20); // = NTrailingZeroes(0b1100) = 2 /// ``` internal function NTrailingZeroes(number : Int) : Int { mutable nZeroes = 0; mutable copy = number; while (copy % 2 == 0) { set nZeroes += 1; set copy /= 2; } return nZeroes; } /// # Summary /// An implementation for `CNOT` that when controlled using a single control uses /// a helper qubit and uses `ApplyAnd` to reduce the T-count to 4 instead of 7. internal operation ApplyLowTCNOT(a : Qubit, b : Qubit) : Unit is Adj+Ctl { body (...) { CNOT(a, b); } adjoint self; controlled (ctls, ...) { // In this application this operation is used in a way that // it is controlled by at most one qubit. Fact(Length(ctls) <= 1, "At most one control line allowed"); if IsEmpty(ctls) { CNOT(a, b); } else { use q = Qubit(); within { ApplyAnd(Head(ctls), a, q); } apply { CNOT(q, b); } } } controlled adjoint self; }
估算 Shor 算法
现在使用默认假设来估算 RunProgram
操作的物理资源。 添加新单元格,然后粘贴并复制以下代码:
result = qsharp.estimate("RunProgram()")
result
qsharp.estimate
函数创建一个结果对象,可用于显示整体物理资源计数的表。 可以通过折叠包含更多信息的组来检查成本详细信息。
例如,折叠“逻辑量子比特参数”组以查看代码距离为 21,物理量子比特数为 882。
逻辑量子比特参数 | 值 |
---|---|
QEC 方案 | surface_code |
码距 | 21 |
物理量子比特 | 882 |
逻辑周期时间 | 8 毫秒 |
逻辑量子比特错误率 | 3.00E-13 |
交叉预制 | 0.03 |
错误更正阈值 | 0.01 |
逻辑周期时间公式 | (4 * twoQubitGateTime + 2 * oneQubitMeasurementTime ) * codeDistance |
物理量子比特公式 | 2 * codeDistance * codeDistance |
提示
对于更紧凑的输出表,可以使用 result.summary
。
空间图
用于算法和 T 工厂的物理量子比特的分布可能会影响算法的设计。 可以使用 qsharp-widgets
包来可视化此分布,以便更好地了解算法的预计空间要求。
from qsharp_widgets import SpaceChart
SpaceChart(result)
在此示例中,运行算法所需的物理量子比特数为 829766,其中 196686 个是算法量子比特,633080 个是 T 工厂量子比特。
比较不同量子比特技术的资源估算值
使用 Azure Quantum 资源估算器可以运行目标参数的多个配置并比较结果。 如果要比较不同量子比特模型、QEC 方案或错误预算的成本,这会非常有用。
还可以使用 EstimatorParams
对象构建估算参数的列表。
from qsharp.estimator import EstimatorParams, QubitParams, QECScheme, LogicalCounts
labels = ["Gate-based µs, 10⁻³", "Gate-based µs, 10⁻⁴", "Gate-based ns, 10⁻³", "Gate-based ns, 10⁻⁴", "Majorana ns, 10⁻⁴", "Majorana ns, 10⁻⁶"]
params = EstimatorParams(6)
params.error_budget = 0.333
params.items[0].qubit_params.name = QubitParams.GATE_US_E3
params.items[1].qubit_params.name = QubitParams.GATE_US_E4
params.items[2].qubit_params.name = QubitParams.GATE_NS_E3
params.items[3].qubit_params.name = QubitParams.GATE_NS_E4
params.items[4].qubit_params.name = QubitParams.MAJ_NS_E4
params.items[4].qec_scheme.name = QECScheme.FLOQUET_CODE
params.items[5].qubit_params.name = QubitParams.MAJ_NS_E6
params.items[5].qec_scheme.name = QECScheme.FLOQUET_CODE
qsharp.estimate("RunProgram()", params=params).summary_data_frame(labels=labels)
量子比特模型 | 逻辑量子比特 | 逻辑深度 | T 状态 | 码距 | T 工厂 | T 工厂分数 | 物理量子比特 | rQOPS | 物理运行时 |
---|---|---|---|---|---|---|---|---|---|
基于门的 µs,10⁻³ | 223 3.64M | 4.70M | 17 | 13 | 40.54% | 216.77k | 21.86k | 10 小时 | |
基于门的 µs,10⁻⁴ | 223 | 3.64M | 4.70M | 9 | 14 | 43.17% | 63.57k | 41.30k | 5 小时 |
基于门的 ns,10⁻³ | 223 3.64M | 4.70M | 17 | 16 | 69.08% | 416.89k | 32.79M | 25 秒 | |
基于门的 ns,10⁻⁴ | 223 3.64M | 4.70M | 9 | 14 | 43.17% | 63.57k | 61.94M | 13 秒 | |
Majorana ns,10⁻⁴ | 223 3.64M | 4.70M | 9 | 19 | 82.75% | 501.48k | 82.59M | 10 秒 | |
Majorana ns,10⁻⁶ | 223 3.64M | 4.70M | 5 | 13 | 31.47% | 42.96k | 148.67M | 5 秒 |
从逻辑资源计数中提取资源估计值
如果你已经知道操作的一些估算值,则资源估算器允许你将已知的估算值合并到程序的总成本中,以减少执行时间。 可以使用 LogicalCounts
类从预先计算的资源估算值中提取逻辑资源估算值。
选择“代码”添加新单元格,然后输入并运行以下代码:
logical_counts = LogicalCounts({
'numQubits': 12581,
'tCount': 12,
'rotationCount': 12,
'rotationDepth': 12,
'cczCount': 3731607428,
'measurementCount': 1078154040})
logical_counts.estimate(params).summary_data_frame(labels=labels)
量子比特模型 | 逻辑量子比特 | 逻辑深度 | T 状态 | 码距 | T 工厂 | T 工厂分数 | 物理量子比特 | 物理运行时 |
---|---|---|---|---|---|---|---|---|
基于门的 µs,10⁻³ | 25481 | 1.2e+10 | 1.5e+10 | 27 | 13 | 0.6% | 37.38M | 6 年 |
基于门的 µs,10⁻⁴ | 25481 | 1.2e+10 | 1.5e+10 | 13 | 14 | 0.8% | 8.68M | 3 年 |
基于门的 ns,10⁻³ | 25481 | 1.2e+10 | 1.5e+10 | 27 | 15 | 1.3% | 37.65M | 2 天 |
基于门的 ns,10⁻⁴ | 25481 | 1.2e+10 | 1.5e+10 | 13 | 18 | 1.2% | 8.72M | 18 小时 |
Majorana ns,10⁻⁴ | 25481 | 1.2e+10 | 1.5e+10 | 15 | 15 | 1.3% | 26.11M | 15小时 |
Majorana ns,10⁻⁶ | 25481 | 1.2e+10 | 1.5e+10 | 7 | 13 | 0.5% | 6.25M | 7 小时 |
结论
在最坏的情况下,使用基于门的 μs 量子比特(具有纳秒制操作时间的量子比特,例如超导量子比特)和表层 QEC 代码的量子计算机需要 6 年和 3738 万个量子比特才能使用 Shor 算法将 2048 位整数因式分解。
如果使用其他量子比特技术(例如基于门的 ns 离子量子比特和同一表层代码),量子比特的数量不会有太大变化,但在最坏的情况下,运行时变为两天,在乐观的情况下为 18 小时。 如果更改量子比特技术和 QEC 代码(例如,使用基于 Majorana 的量子比特),在最佳情况下,使用 Shor 算法将 2,048 位整数因式分解为包含 625 万个量子比特的数组可以在几小时内完成。
从试验中可以得出结论,使用 Majorana 量子比特和 Floquet QEC 代码是执行 Shor 算法和因式分解 2048 位整数的最佳选择。