你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn。
DataOperations Class
DataOperations.
You should not instantiate this class directly. Instead, you should create an MLClient instance that instantiates it for you and attaches it as an attribute.
- Inheritance
-
azure.ai.ml._scope_dependent_operations._ScopeDependentOperationsDataOperations
Constructor
DataOperations(operation_scope: OperationScope, operation_config: OperationConfig, service_client: AzureMachineLearningWorkspaces | AzureMachineLearningWorkspaces, service_client_012024_preview: AzureMachineLearningWorkspaces, datastore_operations: DatastoreOperations, **kwargs: Any)
Parameters
Name | Description |
---|---|
operation_scope
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationScope>
Scope variables for the operations classes of an MLClient object. |
operation_config
Required
|
<xref:azure.ai.ml._scope_dependent_operations.OperationConfig>
Common configuration for operations classes of an MLClient object. |
service_client
Required
|
Union[ <xref:azure.ai.ml._restclient.v2023_04_01_preview._azure_machine_learning_workspaces.AzureMachineLearningWorkspaces>, <xref:azure.ai.ml._restclient.v2021_10_01_dataplanepreview._azure_machine_learning_workspaces. AzureMachineLearningWorkspaces>]
Service client to allow end users to operate on Azure Machine Learning Workspace resources (ServiceClient042023Preview or ServiceClient102021Dataplane). |
datastore_operations
Required
|
Represents a client for performing operations on Datastores. |
service_client_012024_preview
Required
|
|
Methods
archive |
Archive a data asset. |
create_or_update |
Returns created or updated data asset. If not already in storage, asset will be uploaded to the workspace's blob storage. |
get |
Get the specified data asset. |
import_data |
Note This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information. Returns the data import job that is creating the data asset. |
list |
List the data assets of the workspace. |
list_materialization_status |
List materialization jobs of the asset. |
mount |
Note This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information. Mount a data asset to a local path, so that you can access data inside it under a local path with any tools of your choice. |
restore |
Restore an archived data asset. |
share |
Note This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information. Share a data asset from workspace to registry. |
archive
Archive a data asset.
archive(name: str, version: str | None = None, label: str | None = None, **kwargs: Any) -> None
Parameters
Name | Description |
---|---|
name
Required
|
Name of data asset. |
version
Required
|
Version of data asset. |
label
Required
|
Label of the data asset. (mutually exclusive with version) |
Returns
Type | Description |
---|---|
None |
Examples
Archive data asset example.
ml_client.data.archive("data_asset_name")
create_or_update
Returns created or updated data asset.
If not already in storage, asset will be uploaded to the workspace's blob storage.
create_or_update(data: Data) -> Data
Parameters
Name | Description |
---|---|
data
Required
|
Data asset object. |
Returns
Type | Description |
---|---|
Data asset object. |
Exceptions
Type | Description |
---|---|
Raised when the Data artifact path is already linked to another asset |
|
Raised if Data cannot be successfully validated. Details will be provided in the error message. |
|
Raised if local path provided points to an empty directory. |
Examples
Create data assets example.
from azure.ai.ml.entities import Data
data_asset_example = Data(name=data_asset_name, version="2.0", path="./sdk/ml/azure-ai-ml/samples/src")
ml_client.data.create_or_update(data_asset_example)
get
Get the specified data asset.
get(name: str, version: str | None = None, label: str | None = None) -> Data
Parameters
Name | Description |
---|---|
name
Required
|
Name of data asset. |
version
Required
|
Version of data asset. |
label
Required
|
Label of the data asset. (mutually exclusive with version) |
Returns
Type | Description |
---|---|
Data asset object. |
Exceptions
Type | Description |
---|---|
Raised if Data cannot be successfully identified and retrieved. Details will be provided in the error message. |
Examples
Get data assets example.
ml_client.data.get(name="data_asset_name", version="2.0")
import_data
Note
This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Returns the data import job that is creating the data asset.
import_data(data_import: DataImport, **kwargs: Any) -> PipelineJob
Parameters
Name | Description |
---|---|
data_import
Required
|
DataImport object. |
Returns
Type | Description |
---|---|
data import job object. |
Examples
Import data assets example.
from azure.ai.ml.entities._data_import.data_import import DataImport
from azure.ai.ml.entities._inputs_outputs.external_data import Database
database_example = Database(query="SELECT ID FROM DataTable", connection="azureml:my_azuresqldb_connection")
data_import_example = DataImport(
name="data_asset_name", path="azureml://datastores/workspaceblobstore/paths/", source=database_example
)
ml_client.data.import_data(data_import_example)
list
List the data assets of the workspace.
list(name: str | None = None, *, list_view_type: ListViewType = ListViewType.ACTIVE_ONLY) -> ItemPaged[Data]
Parameters
Name | Description |
---|---|
name
Required
|
Name of a specific data asset, optional. |
Keyword-Only Parameters
Name | Description |
---|---|
list_view_type
|
View type for including/excluding (for example) archived data assets. Default: ACTIVE_ONLY. |
Returns
Type | Description |
---|---|
An iterator like instance of Data objects |
Examples
List data assets example.
ml_client.data.list(name="data_asset_name")
list_materialization_status
List materialization jobs of the asset.
list_materialization_status(name: str, *, list_view_type: ListViewType = ListViewType.ACTIVE_ONLY, **kwargs: Any) -> Iterable[PipelineJob]
Parameters
Name | Description |
---|---|
name
Required
|
name of asset being created by the materialization jobs. |
Keyword-Only Parameters
Name | Description |
---|---|
list_view_type
|
View type for including/excluding (for example) archived jobs. Default: ACTIVE_ONLY. |
Returns
Type | Description |
---|---|
An iterator like instance of Job objects. |
Examples
List materialization jobs example.
ml_client.data.list_materialization_status("data_asset_name")
mount
Note
This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Mount a data asset to a local path, so that you can access data inside it under a local path with any tools of your choice.
mount(path: str, mount_point: str | None = None, mode: str = 'ro_mount', debug: bool = False, persistent: bool = False, **_kwargs) -> None
Parameters
Name | Description |
---|---|
path
Required
|
The data asset path to mount, in the form of azureml: or azureml::. |
mount_point
Required
|
A local path used as mount point. |
mode
Required
|
Mount mode. Only ro_mount (read-only) is supported for data asset mount. |
debug
Required
|
Whether to enable verbose logging. |
persistent
Required
|
Whether to persist the mount after reboot. Applies only when running on Compute Instance, where the 'CI_NAME' environment variable is set." |
Returns
Type | Description |
---|---|
None |
restore
Restore an archived data asset.
restore(name: str, version: str | None = None, label: str | None = None, **kwargs: Any) -> None
Parameters
Name | Description |
---|---|
name
Required
|
Name of data asset. |
version
Required
|
Version of data asset. |
label
Required
|
Label of the data asset. (mutually exclusive with version) |
Returns
Type | Description |
---|---|
None |
Examples
Restore data asset example.
ml_client.data.restore("data_asset_name")
share
Note
This is an experimental method, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Share a data asset from workspace to registry.
share(name: str, version: str, *, share_with_name: str, share_with_version: str, registry_name: str, **kwargs: Any) -> Data
Parameters
Name | Description |
---|---|
name
Required
|
Name of data asset. |
version
Required
|
Version of data asset. |
Keyword-Only Parameters
Name | Description |
---|---|
share_with_name
|
Name of data asset to share with. |
share_with_version
|
Version of data asset to share with. |
registry_name
|
Name of the destination registry. |
Returns
Type | Description |
---|---|
Data asset object. |
Examples
Share data asset example.
ml_client.data.share(
name="data_asset_name",
version="2.0",
registry_name="my-registry",
share_with_name="transformed-nyc-taxi-data-shared-from-ws",
share_with_version="2.0",
)