你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn。
MonitorDefinition Class
Monitor definition
Constructor
MonitorDefinition(*, compute: ServerlessSparkCompute, monitoring_target: MonitoringTarget | None = None, monitoring_signals: Dict[str, DataDriftSignal | DataQualitySignal | PredictionDriftSignal | FeatureAttributionDriftSignal | CustomMonitoringSignal | GenerationSafetyQualitySignal | GenerationTokenStatisticsSignal] = None, alert_notification: Literal['azmonitoring'] | AlertNotification | None = None)
Keyword-Only Parameters
Name | Description |
---|---|
compute
|
The Spark resource configuration to be associated with the monitor |
monitoring_target
|
The ARM ID object associated with the model or deployment that is being monitored. |
monitoring_signals
|
Optional[Dict[str, Union[DataDriftSignal , DataQualitySignal, PredictionDriftSignal , FeatureAttributionDriftSignal , CustomMonitoringSignal , GenerationSafetyQualitySignal , GenerationTokenStatisticsSignal , ModelPerformanceSignal]]]
The dictionary of signals to monitor. The key is the name of the signal and the value is the DataSignal object. Accepted values for the DataSignal objects are DataDriftSignal, DataQualitySignal, PredictionDriftSignal, FeatureAttributionDriftSignal, and CustomMonitoringSignal. |
alert_notification
|
The alert configuration for the monitor. |
Examples
Creating Monitor definition.
from azure.ai.ml.entities import (
AlertNotification,
MonitorDefinition,
MonitoringTarget,
SparkResourceConfiguration,
)
monitor_definition = MonitorDefinition(
compute=SparkResourceConfiguration(instance_type="standard_e4s_v3", runtime_version="3.4"),
monitoring_target=MonitoringTarget(
ml_task="Classification",
endpoint_deployment_id="azureml:fraud_detection_endpoint:fraud_detection_deployment",
),
alert_notification=AlertNotification(emails=["abc@example.com", "def@example.com"]),
)